

ADL400(MID)

Installation and operation instruction T1.5

ACREL Co.,Ltd

Declaration

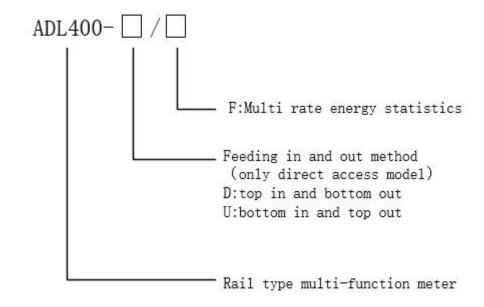
The copyright is the property of Acrel. Any information in any paragraph or section cannot be extracted, copied or otherwise reproduced or propagated. Otherwise offenders shall take all consequences.

All rights are reserved.

Acrel reserves the right to modify the product specifications herein without notification. Please consult the local agent about the latest specifications before placing a purchase order.

Manual revision record

Date	Old	New	Change
2022. 05. 17		T1.0	1. First version
2022. 08. 19	T1.0	T1. 1	2. Add direct access model
2023. 02. 08	T1.1	T1.2	3. Add Device model register
2023. 12. 21	T1.2	T1.3	4. Added some detailed descriptions
2024. 03. 21	T1.3	T1.4	5. Add a current specification
			6. Add some descriptions of data units
			7. Edit the size description image
2024. 09. 24	T1.4	T1.5	8. Modify cover icon and typography
			9. Amend the torque of connect via CT


Catalog

1	General	1	_
2	Type description —	1	_
3	Function description —	1	_
4	Technical parameter — —	2	_
5	Outline	2	_
6	Wiring and installing	3	-
7	Function description — —	5	-
8	Operation and display	5	-
9	Communication description	11	_

1 General

ADL400 is a smart meter designed for power supply system, industrial and mining enterprises and utilities to calculate the electricity consumption and manage the electric demand. It features the high precision, small size and simple installation. It integrates the measurement of all electrical parameters with the comprehensive electricity metering and management provides various data on previous 48 months, checks the 2nd-32nd subharmonics and the total harmonic content. It is fitted with RS485 communication port and adapted to MODBUS-RTU. ADL400 can be used in all kinds of control systems, SCADA systems and energy management systems. The meter meet the related technical requirements of electricity meter in the IEC62053-21 standards.

2 Type description

3 Function description

Table 1 Function description list

Function	Function description	Function provide
	Active kWh (positive and negative)	
Measurement of	Reactive kvarh (positive and negative)	
energy	A, B, C split phase positive active energy	
Measurement of	U, I	
electrical	D O C DE E	_
parameters	P、Q、S、PF、F	-
Measurement of	2~31 ST Voltage and Current harmonic	_
harmonics	2~31 Voltage and Current narmonic	•

LCD Display	12 bits section LCD display, background light	
Key programming	3 keys to communication and set parameters	
Pulse output	Active pulse output	
Taise output	Treat, a pulsa output	_
	Date, time	
Multi-tariff and	Max demand and occurrence time	
functions	Frozen data on last 48 months, last 90days	
	Adapt 4 time zones, 4 time interval lists, 14 time	
	interval by day and 4 tariff rates	
C	Communication interface: RS485,	_
Communication	Communication protocol: MODBUS-RTU	

4 Technical parameter

Table 2 technical parameter description

project performance parameter					
		ication	3 phase 3 wires, 3 phase 4 wires		
	_	Reference voltage	3×230/400V		
	Valtaga	Consumption	<10VA(Single phase)		
	Voltage	Impedance	>2MΩ		
		Accuracy class	Error ± 0.2%		
			0.01-1(6)A (Secondary access model)		
Measurement		Input current	0.1-10(80)A(Direct access model)		
	Current		0.1-10(100)A(Direct access model)		
		Consumption	<1VA Single phase rated current		
		Accuracy class	Error ± 0.2%		
		Power	Active, reactive, apparent power, error $\pm 0.5\%$		
		Frequency	$45\sim65$ Hz, Error $\pm0.2\%$		
	Active Energy Class(kWh)		0.01-1(6)A,0.1-10(80)A:C(kWh)		
Metering			0.1-10(100)A:B(kWh)		
	Clock		≤0.5s/d		
Digit signal]	Energy pulse output	1 active photocoupler output		
	Width of pulse		80±20ms		
pulse	Pulse constant		Direct access model :400imp/kWh		
			Secondary access model :10000imp/kWh		
	Interface	and communication protocol	RS485: Modbus RTU		
communication	Range of communication address		Modbus RTU:1~247;		
	Baud rate		1200bps~38400bps		
	_		-25°C to +55°C (Secondary access model)		
	V	vorking temperature	-40°C to +70°C (Direct access model)		
environment	Relative humidity		≤95%(No condensation)		

5 Dimension drawings

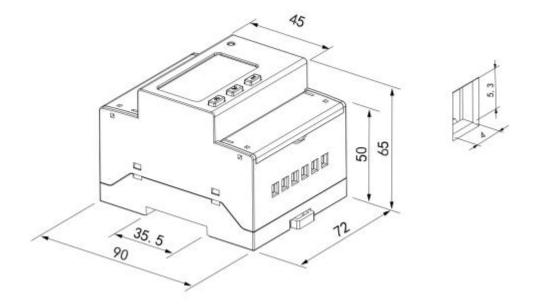


Fig 1 connect via CT

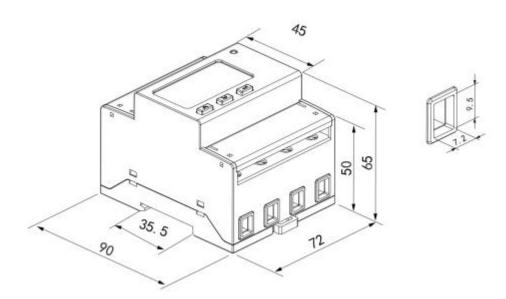


Fig 2 direct connect

Note: The torque of direct connect should not be greater than $3\text{-}4N\cdot m$, and the torque of connect via CT should not be greater than $0.5N\cdot m$.

6 Wiring and installing

6.1 Wiring sample of voltage and current

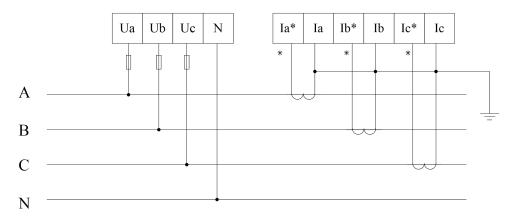


Fig 3 Three phase four lines connect via CT

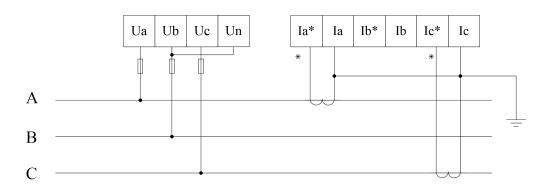


Fig 4 Three phase three lines connect via CT

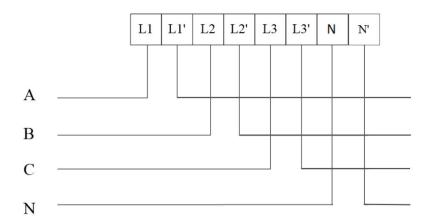


Fig 5 Three phase four lines direct connect

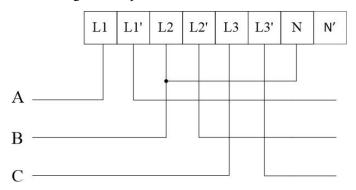


Fig 6 Three phase three lines direct connect

6.2 Wiring diagram of communication and pulse terminals

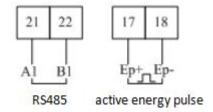


Fig 7 Communication, pulse connection

7 Function description

7.1 Measurement

It can measure the electrical parameter, include U, I, P, Q, S, PF, F, 2nd-31st harmonics and total harmonic content.

Such as,
$$U = 220.1V$$
, $f = 49.98Hz$, $I = 1.99A$, $P = 0.439kW$.

7.2 Calculating

Can measure the total active energy, forward active energy, reversing active energy, forward reactive energy, reversing reactive energy.

7.3 Timing

There are four time tables, the year can be divided into four time zones, and every table have fourteen daily time periods and four rates can be set.

7.4 Demand

The description about demand:

Table 3 Demand description list

Demand	The average power in the demand cycle.
Maximum demand	The maximum value of demand in a period of time.
Slip time	The method of measuring the demand from any point in time by a recurrence of time less than the period of the demand is called sliding demand. The recurrence time is called the slip time.
Demand	An equal interval of time between successive measurements of average
cycle	power, also called window time.

The default demand cycle is 15 minutes, slip time is 1 minute.

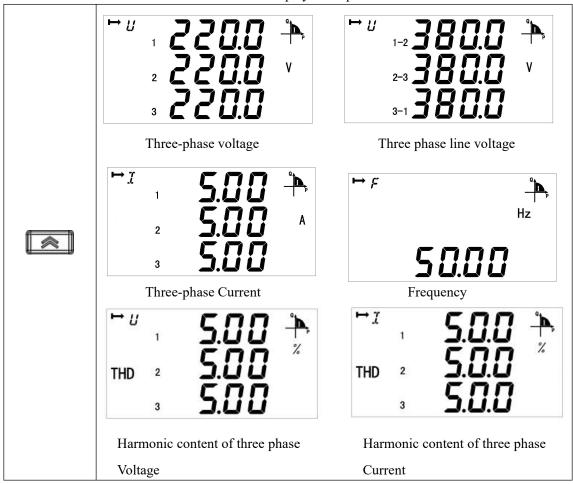
The meter can measure 4 kinds of maximum demand, forward active, reversing active, inductive reactive, capacitive reactive maximum demand and the time of occurrence.

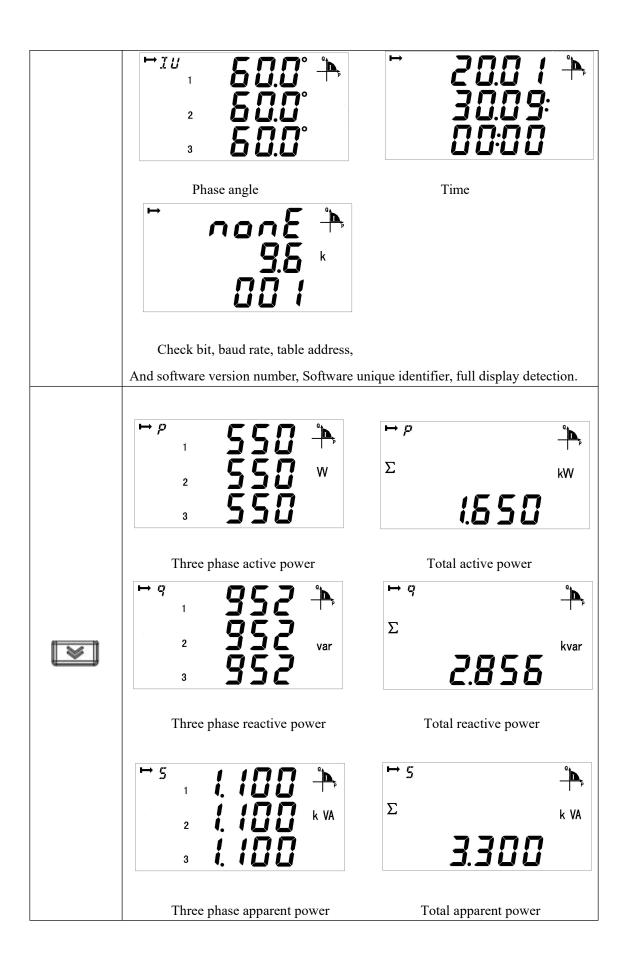
7.5 History data statistics

The meter can record last 48 months and last 90 days history energy in each tariff.

8 Operation and display

8.1 Key function description


Table 4 Key's function description


icon	Name	Function		
	Voltage and current, up	Check the voltage and current Leftward and change flash in		
		programming menu		
61		Check the power		
	Power, down	Rightward and change the value		
		on flash		
		Check the energy		
₹	Energy, enter	In/out programming menu		
-		Save changes		


8.2 Display menu

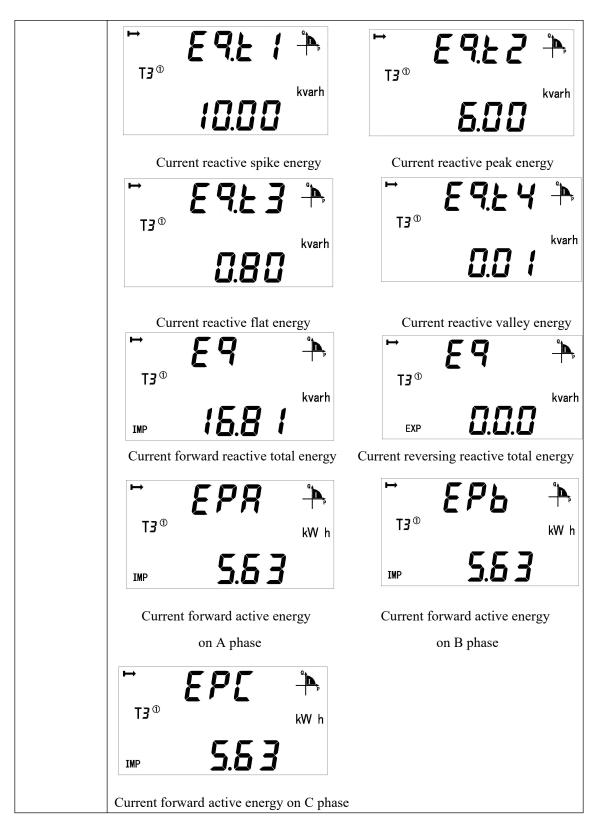
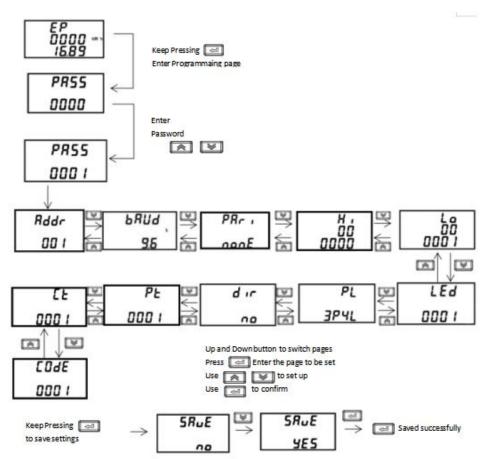

The meter will show the forward active energy after powering. The customers can change the information showing by pressing the keys. The menu description is listed as below.

Table 5 display descriptions


Note,

- 1. All the display menus above are in the model of ADL400 three phases four lines with multi-tariff rate function and can be changed by the keys.
- 2. There will not be power or power factor on each phase and will only show total power and power factor (active, reactive, apparent) under the three phase three lines.

- 3. There will not be date, time, maximum demand and energy by time without the function of multi-tariff rate.
- 4. The arrow in the upper left corner of the screen represent the DIR settings, from left to right means that DIR is set to 0; if the arrow is from right to left, it indicates that DIR is set to 1.
 - 5. 'IMP' in the lower left corner of the screen means forward, and 'EXP' means reverse.

8.3 Key Menu

Keep press at any main menu and get in "PASS" interface, and then press show "0000", and enter the code. If you enter a wrong code, it will show "fail" and back to main menu; and if you enter a right code, you can set the parameter. After setting the parameter and keep press in, it will show "save" and save the change by pressing in "yes" interface in "no" interface.

8.4 Data settings

Table 6 setting menu description

Constant description						
Num	Num Second menu					
	Symbol	Mean	Range			
1	ADDR	Communicate's ADDR	1-247			
1	ADDR	settings	1-247			
2	Baud	Baud choose	1200、2400、4800、9600、19200、			
	Daud	Baud choose	38400			
3	Pari	Parity choose	None、Odd、Even			
4	LED	Backlight time	1-255minutes, 0 means always on			
5	PL	Wiring sample	3P4L:3 phase 4 wires			
3	PL	wiring sample	3P3L:3 phase 3 wires			
6	DIR	direction of current	no-Forward			
6	DIK	direction of current	yes-Reverse			
7	S-TY	Apparent power	PQS			
/	5-11	calculation method	RMS			
8	EF-E	time-sharing	EF-Function on			
0	Er-E	measurement function	E-Function off			
9	Pt	Voltage transformer	1-9999			
9	Pt	settings	1-9999			
10	Ct	Current transformer	1-9999			
10	Ci	settings	1-9999			
11	CoDE	Code settings	1-9999			
			No-Angle between each current and			
12	DILAC	Phase angle calculation	each voltage			
12	PHAS	method	Yes-Angle between three-phase			
			current and phase a voltage			
13	nost	Starting power shield	Shielding range:0.1-2.0%(*UnIn)			

9 Communication description

The meter adapts MODBUS-RTU protocol, and the baud rate can be chosen from 1200bps,2400 bps,4800 bps,9600bps,19200bps and 38400 bps. The dafault parity is None.

The meter needs shielded twisted pair conductors to connect. Customers should consider the whole network's parameters such like communication wire's length, the direction, communication transformer and network cover range, etc.

Note:

- 1. Wiring should follow the wiring requirements;
- 2. Connect all the meter in the RS485 net work even some do not need to communication, which is benefit for error checking and testing;
 - 3. Use two color wires in connecting wires and all the A port use the same color.
 - 4. No longer than 1200 meters of RS485 bus line.

9.1 ADDR List

MODBUS-RTU protocol has 03H and 10H command to read and write registers respectively. The following chart is registers' address list.

Table 7 communication address list

Address	Variable Variable	Length	R/W	Notes
0000H	Current total active energy	4	R	
0002H	Current spike active energy	4	R	
0004H	Current peak active energy	4	R	kWh
0006Н	Current flat active energy	4	R	UINT32
0008H	Current valley active energy	4	R	Keep 2 decimal places
000AH	Current forward active total energy	4	R	
000CH	Current forward active spike energy	4	R	Particularly, if ct and Pt
000EH	Current forward active peak energy	4	R	is not all 1, actual
0010H	Current forward active flat energy	4	R	electric energy value
0012H	Current forward active valley energy	4	R	should be product of
0014H	Current reversing active total energy	4	R	register reading and
0016H	Current reversing active spike energy	4	R	Pt*Ct, except for the specially noted register
0018H	Current reversing Active peak energy	4	R	data.
001AH	Current reversing active flat energy	4	R	uata.
001CH	Current reversing Active valley energy	4	R	
001EH	Current total reactive energy	4	R	
0020H	Current reactive spike energy	4	R	
0022H	Current reactive peak energy	4	R	
0024H	Current reactive flat energy	4	R	
0026Н	Current reactive valley energy	4	R	
0028H	Current forward reactive total energy	4	R	kvarh
002AH	Current forward reactive spike energy	4	R	UINT32
002CH	Current forward reactive peak energy	4	R	Keep 2 decimal places
002EH	Current forward reactive flat energy	4	R	Particularly, note the
0030H	Current forward reactive valley energy	4	R	same as above.
0032H	Current reversing reactive total energy	4	R	
0034H	Current reversing reactive spike energy	4	R	
0036Н	Current reversing reactive peak energy	4	R	
0038H	Current reversing reactive flat energy	4	R	
003AH	Current reversing reactive valley energy	4	R	
003CH	Time: second, minute	2	R/W	
003DH	Time: hour, day	2	R/W	
003EH	Time: month, year	2	R/W	
	(11.51)			baud:
003FH	Address (high 8 bit) Baud (low 8 bit)	2	R/W	0: 1200
				1: 2400
				2: 4800

			1	3: 9600
				4: 19200
				5: 38400
0040H	pulse constant	2	R	
004477	First time zone time period number	_	D /111	
0041H	Start date of the first time zone: Day	2	R/W	
00.4011	Start date of the first time zone: month		D/III	
0042H	Second time zone time period number	2	R/W	Time zone number:
004211	Start date of the second time zone: day	2	2 R/W	1: First time zone
0043H	Start date of the second time zone: month	2		2: Second time zone
0044H	Third time zone time period number	2	R/W	3: Third time zone
004411	Start date of the third time zone: day	2	IX/ VV	4: Fourth time zone
0045H	Start date of the third time zone: month	2	R/W	
004311	Fourth time zone time period number		10 **	
0046Н	Start date of the fourth time zone: day	2	R/W	
00 1011	Start date of the fourth time zone: month	2	10 11	
0047H-0060H	Reserve			
0061H	Voltage of A phase	2	R	
0062H	Voltage of B phase	2	R	Resolution: 0.1V
0063H	Voltage of C phase	2	R	
0064H	Current of A phase	2	R	
0065H	Current of B phase	2	R	Resolution: 0.01A
0066Н	Current of C phase	2	R	
0067Н-0076Н	Reserve		<u>i</u>	
0077H	frequency	2	R	Resolution: 0.01
0078H	Voltage between A-B	2	R	Uint16
0079H	Voltage between C-B	2	R	Resolution: 0.1V
007AH	Voltage between A-C	2	R	Resolution: 0.1 v
007BH	Forward active maximum demand	2	R	
007CH	Time of occurrence for the forward active	2	R	
007611	maximum amount:minute, hour		1	
007DH	Time of occurrence for the forward active	2	R	
007211	maximum amount:day month		1	Resolution: 0.001
007EH	Reversing active maximum demand	2	R	Sequence of
	Time of occurrence for the Reversing			occurrence time:
007FH	active maximum demand amount:minute	2	R	minute Hour day
	hour			month
0080Н	Time of occurrence for the Reversing	_		
	active maximum demand amount:day, month	2	R	
0081H	Maximum forward demand for reactive	2	R	
	power			

I	1		7	1
0082Н	Time of occurrence for the forward reactive maximum amount:minute, hour	2	R	
0083H	Time of occurrence for the forward reactive maximum amount:day, month	2	R	
0084Н	Maximum reversing demand for reactive power	2	R	
0085H	Time of occurrence for the reversing reactive maximum amount:minute, hour	2	R	
0086Н	Time of occurrence for the reversing reactive maximum amount:day, month	2	R	
0087H	Forward active energy of A phase	4	R	kWh
0089Н	Forward active energy of B phase	4	R	UINT32
008BH	Forward active energy of C phase	4	R	Keep 2 decimal places
008DH	PT	2	R/W	
008EH	CT	2	R/W	
008FH-0091H	Reserve	2	R	
0092H	Zero sequence current	2	R	Resolution: 0.01A
0093H	Voltage imbalance	2	R	UINT16
0094H	Current imbalance	2	R	Resolution: 0.001
0095Н	Address (high 8 bit) Baud (low 8 bit)	2	R/W	parity bit: 0: None 1: Odd 2: Even stop bit: 0: one stop bit 1: two stop bit
0096H-00A5H	Reserve		•	
00A6H	Code	2	R/W	1-9999
00A7H-00C9H	reserve		•	
00CAH	The back light time	2	R/W	1-255minutes, 0 means always on
00CBH-0120H	reserve			
0121H	Daily frozen time:Hour	2	R/W	
0122H	Monthly frozentime:day, hour	2	R/W	
0123Н-0163Н	Reserve			
0164H	Active power of A phase	4	R	
0166H	Active power of B phase	4	R	Int32
0168H	Active power of C phase	4	R	Resolution: 0.001kW
016AH	Total active power	4	R	
016CH	Reactive power of A phase	4	R	Int32
016EH	Reactive power of B phase	4	R	Resolution: 0.001kvar

0170H	Reactive power of C phase	4	R		
0172H	Total reactive power	4	R		
0174H	Apparent power of A phase	4	R		
0176Н	Apparent power of B phase	4	R	Uint32	
0178H	Apparent power of C phase	4	R	Resolution: 0.001kVA	
017AH	Total apparent power	4	R		
017CH	Power factor of A phase	2	R		
017DH	Power factor of B phase	2	R	Int16	
017EH	Power factor of C phase	2	R	Resolution: 0.001	
017FH	Total power factor	2	R		
0180H	Maximum forward active demand a day	2	R		
0181H	Occur time:minute, hour	2	R		
0182H	Maximum reversing active demand a day	2	R		
0183H	Occur time:minute, hour	2	R		
0184H	Maximum forward reactive demand a day	2	R		
0185H	Occur time:minute, hour	2	R		
0186H	Maximum reversing reactive demand a day	2	R		
0187H	Occur time:minute hour	2	R		
0188H	Maximum forward active demand last day	2	R	1	
0189H	Occur time:minute, hour	2	R		
018AH	Maximum reversing active demand last day	2	R	Resolution: 0.001	
018BH	Occur time:minute hour	2	R	Occur time:minute	
018CH	Maximum forward reactive demand last day	2	R	hour	
018DH	Occur time:minute \ hour	2	R		
018EH	Maximum reversing reactive demand last day	2	R		
018FH	Occur time:minute hour	2	R		
0190H	Maximum forward active demand last 2 days	2	R	-	
0191H	Occur time:minute hour	2	R		
0192H	Maximum reversing active demand last 2 days	2	R		
0193H	Occur time:minute, hour	2	R	1	
0194H	Maximum forward reactive demand last 2 days	2	R		
0195H	Occur time:minute, hour	2	R	1	

0196Н	Maximum reversing reactive demand last	2	R
0197H	2 days Occur time:minute hour	2	R
019711 0198H	Current forward active demand	2	R
0199H	Current reversing active demand	2	R
019AH	Current forward reactive demand	2	R
019BH	Current reversing reactive demand	2	R
019CH-01FFH	Reserve	2	
0200H	Maximum voltage on A phase	2	R
0201H	Occur date: month, day	2	R
0202H	Occur time: hour, minute	2	R
	Maximum voltage on B phase and occur		
0203H	time	6	R
0206Н	Maximum voltage on C phase and occur time	6	R
0209Н	Maximum current on A phase and occur time	6	R
020CH	Maximum current on B phase and occur time	6	R
020FH	Maximum current on B phase and occur time	6	R
0212H	Maximum active power on A phase	4	R
0214H	Occur data: month, day	2	R
0215H	Occur time: hour, minute	2	R
0216Н	Maximum active power on B phase and occur time	8	R
021AH	Maximum active power on C phase and occur time	8	R
021EH	Maximum total active power and occur time	8	R
0222Н	Maximum reactive power on A phase and occur time	8	R
0226Н	Maximum reactive power on B phase and occur time	8	R
022AH	Maximum reactive power on C phase and occur time	8	R
022EH	Maximum total reactive power and occur time	8	R
0232Н	Maximum apparent power on A phase and occur time	8	R
0236Н	Maximum apparent power on B phase and occur time	8	R

023AH	Maximum apparent power on C phase and occur time	8	R	
023EH	Maximum total apparent power and occur time	8	R	
0242H	Minimum voltage on A phase and occur time	6	R	
0245H	Minimum voltage on B phase and occur time	6	R	
0248H	Minimum voltage on C phase and occur time	6	R	
024BH	Minimum current on A phase and occur time	6	R	
024EH	Minimum current on B phase and occur time	6	R	
0251H	Minimum current on C phase and occur time	6	R	
0254Н	Minimum active power on A phase and occur time	8	R	
0258H	Minimum active power on B phase and occur time	8	R	
025CH	Minimum active power on C phase and occur time	8	R	
0260Н	Minimum total active power and occur time	8	R	
0264Н	Minimum reactive power on A phase and occur time	8	R	
0268Н	Minimum reactive power on B phase and occur time	8	R	
026CH	Minimum reactive power on C phase and occur time	8	R	
0270Н	Minimum total reactive power and occur time	8	R	
0274Н	Minimum apparent power on A phase and occur time	8	R	
0278H	Minimum apparent power on B phase and occur time	8	R	
027EH	Minimum apparent power on C phase and occur time	8	R	
0280Н	Minimum total apparent power and occur time	8	R	
	n n	leserve		
0285H-1FFFH	K	Leserve		

9.2 Floating point electrical parameter data

Table 8 Float data communication address list

Address	Name	Length	R/W	Note
	data without multiplication of the vari		/	
5300H	Voltage of A phase	4	R	
5302H	Voltage of B phase	4	R	
5304H	Voltage of C phase	4	R	Float
5306Н	Voltage between A-B	4	R	Unit:V
5308H	Voltage between C-B	4	R	
530AH	Voltage between A-C	4	R	
530CH	Current of A phase	4	R	
530EH	Current of B phase	4	R	Float
5310H	Current of C phase	4	R	Unit:A
5312H	Active power of A phase	4	R	
5314H	Active power of B phase	4	R	Float
5316Н	Active power of C phase	4	R	Unit:W
5318H	Total active power	4	R	
531AH	Reactive power of A phase	4	R	
531CH	Reactive power of B phase	4	R	Float
531EH	Reactive power of C phase	4	R	Unit:var
5320H	Total reactive power	4	R	
5322H	Apparent power of A phase	4	R	
5324H	Apparent power of B phase	4	R	Float
5326Н	Apparent power of C phase	4	R	Unit:VA
5328H	Total apparent power	4	R	
532AH	Power factor of A phase	4	R	
532CH	Power factor of B phase	4	R	Float
532EH	Power factor of C phase	4	R	rioai
5330H	Total power factor	4	R	
5332Н	frequency	4	R	Float Unit:Hz
5334Н	zero line current	4	R	Float Unit:A
Primary side da	ta that has been multiplied by the vari	able ratio		
0800Н	Voltage of A phase	4	R	
0802H	Voltage of B phase	4	R	
0804H	Voltage of C phase	4	R	Float
0806Н	Voltage between A-B	4	R	Unit:V
0808H	Voltage between C-B	4	R	
080AH	Voltage between A-C	4	R	
080CH	Current of A phase	4	R	
080EH	Current of B phase	4	R	Float
0810H	Current of C phase	4	R	Unit:A
0812H	zero line current	4	R	

0814H	Active power of A phase	4	R	
0816H	Active power of B phase	4	R	- Float
0818H	Active power of C phase	4	R	Unit:kW
081AH	Total active power	4	R	
081CH	Reactive power of A phase	4	R	
081EH	Reactive power of B phase	4	R	- Float
0820H	Reactive power of C phase	4	R	Unit:kvar
0822H	Total reactive power	4	R	
0824H	Apparent power of A phase	4	R	
0826H	Apparent power of B phase	4	R	Float
0828H	Apparent power of C phase	4	R	Unit:kVA
082AH	Total apparent power	4	R	
082CH	Power factor of A phase	4	R	
082EH	Power factor of B phase	4	R	
0830H	Power factor of C phase	4	R	Float
0832H	Total power factor	4	R	
0834H	frequency	4	R	Float Unit:Hz
0836Н	Voltage imbalance	4	R	
0838H	Current imbalance	4	R	
083AH	Current forward active demand	4	R	
083CH	Current reversing active demand	4	R	Float Unit:kW
083EH	Current forward reactive demand	4	R	
0840H	Current reversing reactive demand	4	R	Float Unit:kvar
0842H	Current total active energy	4	R	
0844H	Current spike active energy	4	R	
0846H	Current peak active energy	4	R	
0848H	Current flat active energy	4	R	
084AH	Current valley active energy	4	R	
084CH	Current forward active total energy	4	R	
084EH	Current forward active spike energy	4	R	UINT32
0850H	Current forward active peak energy	4	R	Resolution: 0.1kWh
0852H	Current forward active flat energy	4	R	(Primary side data)
0854H	Current forward active valley energy	4	R	
0856Н	Current reversing active total energy	4	R	
0858H	Current reversing active spike energy	4	R	
085AH	Current reversing Active peak energy	4	R	
085CH	Current reversing active flat energy	4	R	
085EH	Current reversing Active valley energy	4	R	
0860H	Current total reactive energy	4	R	
0862H	Current reactive spike energy	4	R	UINT32
0864H	Current reactive peak energy	4	R	Resolution: 0.1kvarh
0866Н	Current reactive flat energy	4	R	(Primary side data)
0868H	Current reactive valley energy	4	R	

086AH	Current forward reactive total energy	4	R
086CH	Current forward reactive spike energy	4	R
086EH	Current forward reactive peak energy	4	R
0870H	Current forward reactive flat energy	4	R
0872H	Current forward reactive valley energy	4	R
0874H	Current reversing reactive total energy	4	R
0876H	Current reversing reactive spike energy	4	R
0878H	Current reversing reactive peak energy	4	R
087AH	Current reversing reactive flat energy	4	R
087CH	Current reversing reactive valley energy	4	R

9.3 History energy frozen time and history energy energy date

ADL400's registers on frozen by day and by month.

Table 9 Frozen time communication address

Address	Name	R/W	Note
012111	Frozen time by day	R/W	Null (High byte)
0121H			Hour(Low byte)
012211	D122H Frozen time by month R/W	D/W	Day(High byte)
0122H		IN/W	Hour(Low byte)

ADL400 can achieve the history energy statistic in last 48 months and last 90days. (Each tariff rate of energy can be recorded.)The history energy record list below is the registers' name.

Table 10 History energy communication address

Address	Name				
6000H	Assemblage of last 1 day's				
000011	demand and energy				
6022H	Assemblage of last 2 day's				
0022H	demand and energy				
(DD2H	Assemblage of last 90 day's				
6BD2H	demand and energy				
reserve	reserve				
700011	Assemblage of last 1				
7000H	month's demand and energy				
702211	Assemblage of last 2				
7022H	month's demand and energy				
762EH	Assemblage of last 48				
763EH	month's demand and energy				

Data list	Name	Note
6000H	Frozen time:YY-MM	
6001H	Frozen time: DD-hh	
6002H	total active energy	
6004H	Spike active energy	kWh
6006H	peak active energy	UINT32
6008H	flat active energy	Keep 2 decimal places (Secondary side data)
600AH	valley active energy	
600CH	total reactive energy	1 months
600EH	Spike reactive energy	kvarh UINT32
6010H	peak reactive energy	Keep 2 decimal places (Secondary side data)
6012H	flat reactive energy	(Secondary side data)

6014H	valley reactive energy	
001411	variey reactive energy	
6016H	Total amount of phase A	
001011	forward active energy	kWh
6018H	Total amount of phase B	UINT32
001811	forward active energy	Keep 2 decimal places
601AH	Total amount of phase C	(Secondary side data)
001AH	forward active energy	
601CH	Maximum active demand	Resolution: 0.001kW
601DH	Occurrence time: mm-hh	
601EH	Occurrence time : DD-MM	(Secondary side data)
601FH	Maximum reactive demand	Resolution: 0.001kvar
6020H	Occurrence time: mm-hh	(Secondary side data)
6021H	Occurrence time: DD-MM	(Secondary side data)

9.4 Sub-harmonic data

ADL400 can measure harmonics, statistics split-phase 2-31st harmonic voltage and current, total harmonic distortion rate, split-phase harmonic voltage and current, split-phase harmonic active power and reactive power, split-phase fundamental current and voltage, split-phase fundamental active and power reactive power.

Table 11 Harmonics data address list

Address	Name	Length	R/W	Note
05DDH	THDUa	2	R	
05DEH	THDUb	2	R	Total distortion rate of voltage
05DFH	THDUc	2	R	and current on each phase
05E0H	THDIa	2	R	UINT16
05E1H	THDIb	2	R	Resolution: 0.01%
05E2H	THDIc	2	R	
05E3H	THUa	2×30	R	Harmonic voltage on 2 nd -31 st
0601H	THUb	2×30	R	UINT16
061FH	THUc	2×30	R	Resolution: 0.01%
063DH	THIa	2×30	R	Harmonic current on 2 nd -31 st
065BH	THIb	2×30	R	UINT16
0679H	THIc	2×30	R	Resolution: 0.01%
0697H	Fundamental voltage on A phase	2	R	
0698H	Fundamental voltage on B phase	2	R	
0699H	Fundamental voltage on C phase	2	R	UINT16
069AH	Harmonic voltage on A phase	2	R	Resolution: 0.1V
069BH	Harmonic voltage on B phase	2	R	
069CH	Harmonic voltage on C phase	2	R	
069DH	Fundamental current on A phase	2	R	UINT16
069EH	Fundamental current on B phase	2	R	Resolution: 0.01A

069FH	Fundamental current on C phase	2	R	
06A0H	Harmonic current on A phase	2	R	
06A1H	Harmonic current on B phase	2	R	
06A2H	Harmonic current on C phase	2	R	
06A3H	Fundamental active power on A phase	2	R	
06A4H	Fundamental active power on B phase	2	R	INT16
06A5H	Fundamental active power on C phase	2	R	Resolution: 0.001kW
06A6H	Total fundamental active power	2	R	
06A7H	Fundamental reactive power on A phase	2	R	
06A8H	Fundamental reactive power on B phase	2	R	INT16
06A9H	Fundamental reactive power on C phase	2	R	Resolution: 0.001kvar
06AAH	Total fundamental reactive power	2	R	
06ABH	Harmonic active power on A phase	2	R	
06ACH	Harmonic active power on B phase	2	R	INT16
06ADH	Harmonic active power on C phase	2	R	Resolution: 0.001kW
06AEH	Total harmonic active power	2	R	
06AFH	Harmonic reactive power on A phase	2	R	
06B0H	Harmonic reactive power on B phase	2	R	INT16
06B1H	Harmonic reactive power on C phase	2	R	Resolution: 0.001kvar
06B2H	Total harmonic reactive power	2	R	

9.5 SOE Record

Address	Name
3001H	Last event record
3002H	Last 2 event record
	•••
3064H	Last 100 event record

Data list	Name
0000Н	Occur date: YY-MM
0001H	Occur time: DD-hh
0002Н	Occur time: mm-ss
0003H	Event number
0004Н	Event details
0005H	Reserve

Event num	Name
0100	Power on
0200	Clear

Note
Clear current energy
Clear history energy on
Flash
Clear maximum demand
Clear history energy
Clear maximum value on
a period
Clear out

0700	Time calibration
------	------------------

Example: The address is 001 at present, and we send the code: 01 03 30 01 00 06 9B 08 to get the last event record, and the slave station will give back: 01 03 0C $\underline{12\ 01}$ $\underline{08\ 0A\ 01\ 01}$ (2018/1/8 10:1:1) $\underline{01\ 00}$ (powered) $\underline{00\ 00}$ (no details) $\underline{00\ 00}$ (reserved) 80 23

Headquarters: Acrel Co., LTD.

Address: No.253 Yulv Road Jiading District, Shanghai, China

TEL.: 0086-21-69158338 0086-21-69156052 0086-21-59156392 0086-21-69156971

Fax: 0086-21-69158303

Web-site: www.acrel-electric.com

E-mail: ACREL008@vip.163.com

Postcode: 201801

Manufacturer: Jiangsu Acrel Electrical Manufacturing Co., LTD.

Address: No.5 Dongmeng Road, Dongmeng industrial Park, Nanzha Street, Jiangyin City, Jiangsu

Province, China

TEL: 0086-510-86179966

Fax: 0086-510-86179975

Web-site: www.jsacrel.com

Postcode: 214405

E-mail: sales@email.acrel.cn