

ASL2XX Series low-power switch drive

Installation and Use Manual V1.0

Acrel Electric Co., Ltd.

Declaration

The copyright is the property of Acrel. Any information in any paragraph or section cannot be extracted, copied or otherwise reproduced or propagated.

Otherwise offenders shall take all consequences.

All rights are reserved.

Acrel reserves the right to modify the product specifications herein without notification. Please consult the local agent about the latest specifications before placing a purchase order.

Contents

1. Overview	1
2. Product model number	1
3. Main technical parameters	1
4. Installation and wiring	2
4.1 Profile and installation dimensions.	2
4.2 Electrical wiring diagram	4
5. Use the operation guide	6
5.1 Definlight definition	6
5.1.1 Light light of main module	6
5.1.2 From the module indicator light	7
5.2 Key-press operation	7
5.2.1 Description of the main module keys	7
5.2.2 Description of the keys from the module	9
5.3 liquid crystal display	9
5.3.1 Switch drive status query	9
5.3.2 Information query	10
5.3.3 Time setting	11
5.3.4 Timing schedule setting	11
5.3.5 Timed plan view	12
5.3.6 DI / DO linkage	14
5.3.7 RS485 communication settings	15
5.3.8 Other Parameters and information	
6. Functional application	17
6.1 The heartbeat message	17
6.2 General functions	17
6.3 Scene function	17
6.4 Time function	18
7. The Newsletter Guide	18
7.1 Interface Overview	18
7.1.1 Transmission mode	18
7.1.2 information frame format	18
7.2 Introduction to the function code	19
7.2.1 Function code 03H: Read register	19
7.2.2 Function code 10H: Write the register	19
7.3 Drive parameter address table	20
7.3.1 Drive real-time status address table	20

7.3.2 Parameter setting address table	22
7.3.3 Timing address table	25
7.3.4 Event record address table	29
8. Analysis and troubleshooting of common faults	31
9. Notes	32

1. summary

ASL2XX Series small power switch driver (hereinafter referred to as module) is the control module of Ankori ALIBUS intelligent lighting control system. The module is connected with other devices (such as smart panels, sensors, etc.) to form a complete set of lighting control system, and realize the intelligent management of large public construction and building lighting systems.

As a driving module, the module realizes the switching management of super power or three-phase lighting load by controlling the AC contactor. It has a variety of control modes, such as manual switch, event recording, timing switch, delay light off, scene switching, etc.

2. product model

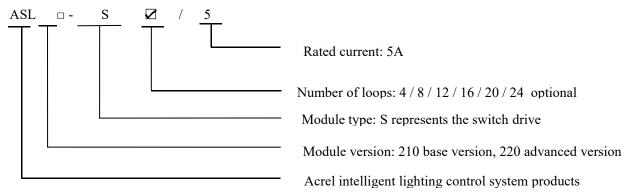


Table 1: Product Specification Table

product model	functional description
ASL220-Sx/5	RS485 communication, fire control linkage 2DI / 2 DO, 30 scheduled tasks
	(including astronomical clock), 24 scheduled tasks, LCD display, 600 switch
	records, 10 switch records, 12 DIDO records, split and closing channels, closing
	times records, closing time accumulation
ASL210-Sx/5	RS485 communication, fire linkage 1DI / 1 DO, split and split channel

3. Main technical parameters

Table 2: Technical parameters table

	•	metric	
pr	oject	ASL220-Sx/5 ASL210-Sx/5	
Power	rated voltage	AC220V±10%	
consumpt ion	power dissipati on	Normal operating condition: 5W	Normal operating condition: 3W
Remote co	Remote control output Magnetic hold, relay, rated current of 5A		y, rated current of 5A
on-o	ff input	Two passive dry contact input	There is no source dry contact input
Swite	h output	Two passive often open contact, contact capacity AC 220V / 1A, DC 30V / 1A	No active often open contact point, contact capacity AC 220V / 1A, DC 30V / 1A
comm	unication	ALIBUS Agreement, and	the Modbus-RTU protocol

way to install	35mm guide rail type installation	
service environment	Operating temperature: -10°C + 55°C; Relative humidity: 95% uncovered	
Storage temperature	-20°C-+70°C	
range		
Local operation interface	Key + LCD monochrome LCD display	Key + dial code switch

4. Installation and wiring

- 4.1 Profile and installation dimensions (mm)
- ASL220-Sx / 5 Low-power switch drive

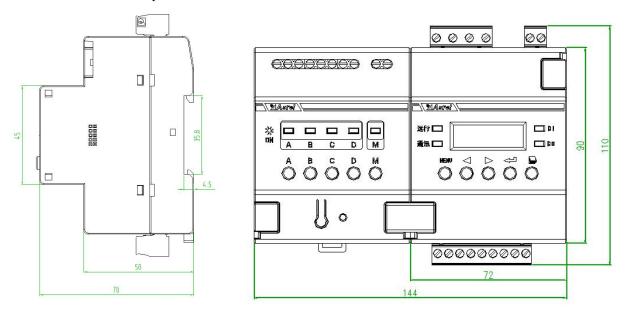


Figure 1 ASL220-Outline and installation dimensions of Sx / 5 low power switch drive

Table 3 ASL220-Sx / 5

product model	Number of	Module width	modulus
	loops	(B)	
ASL220-S4/5	4	144mm	8 Mod
ASL220-S8/5	8	216mm	12 Mod
ASL220-S12/5	12	288mm	16 Mod
ASL220-S16/5	16	360mm	20 Module
ASL220-S20/5	20	432mm	24 Mod

ASL220-S24/5 24	504mm	28 Mod
-----------------	-------	--------

Installation tip: This module is suitable for 35mm guide rail installation, installation only need to put the module into the track.

• ASL210-Sx / 5 Low-power switch drive

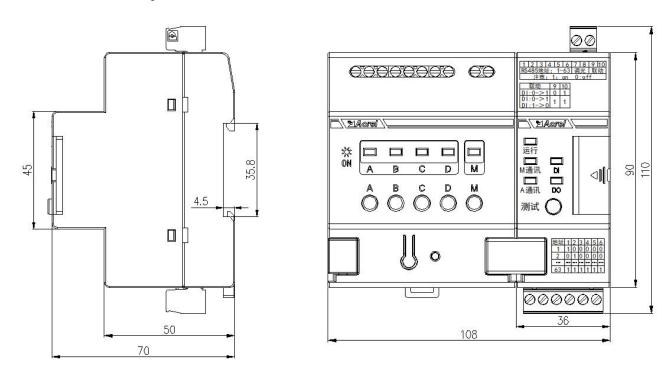


Figure 2 ASL210-Outline and installation dimensions of Sx / 5 low power switch drive

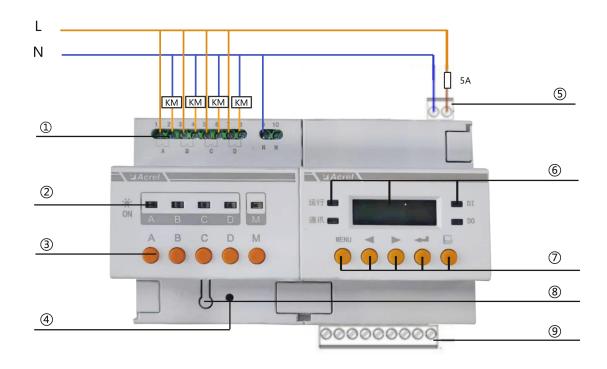
Number of Module width product model modulus ASL210-S4/5 4 108mm 6 Mod ASL210-S8/5 8 10 Module 180mm ASL210-S12/5 12 252mm 14 Mod ASL210-S16/5 324mm 18 Mod 16 ASL210-S20/5 20 396mm 22 Mod ASL210-S24/5 24 468mm 26 Mod

Table 4 ASL210-Sx / 5

Installation tip: This module is suitable for 35mm guide rail installation, installation only need to put the module into the track.

4.2 Electrical wiring diagram

• ASL220-Sx / 5 Low-power switch drive



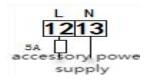
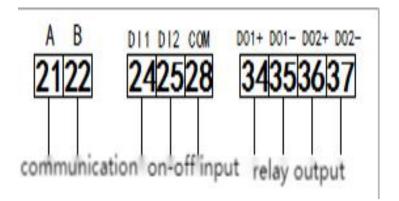

Figure 3 ASL220-Sx / 5 low-power switch driver wiring diagram

Figure 3 shows the wiring diagram of the 4-way small-power switch driver. In actual use, 4,8,12,16,20,24 small power switch driver wiring is similar, not listed here.

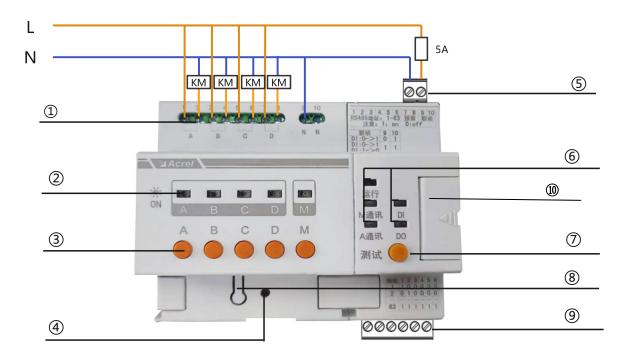

- ① Lighting circuit switch control port;
- 2 Relay circuit status indicator lamp;

Note: The number of the switch loop is sorted from left to right;

- 3 Relay loop manual operation button;
- 4 working station indicator;
- 5 Power supply input terminal;

- 6 Display screen, operation / communication indicator, DI / DO indicator;
- 7 Operation keys: MENU menu key, left key, right key, return and turn page;
- Programming buttons;
- (9) 485 Communication and DI / DO input terminals;

• ASL210-Sx / 5 Low-power switch drive



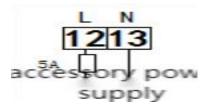
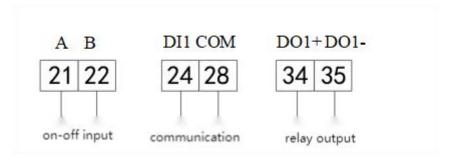

Figure 4 Wiring diagram of ASL210-Sx / 5 low-power switch driver

Figure 4 shows the wiring diagram of the 4-way small-power switch driver. In actual use, 4,8,12,16,20,24 small power switch driver wiring is similar, not listed here.

- ① Lighting circuit switch control port;
- 2 Relay circuit status indicator lamp;


Note: The number of the switch loop is sorted from left to right;

- 3 Relay loop manual operation button;
- 4 working station indicator;
- 5 Power supply input terminal;

6 Operation / communication indicator, DI / DO indicator;

- 7 Operation keys: test keys;
- 8 Programming buttons;
- (9) 485 Communication and DI / DO input terminals;

10 Dial button

5. Use the operational guidelines

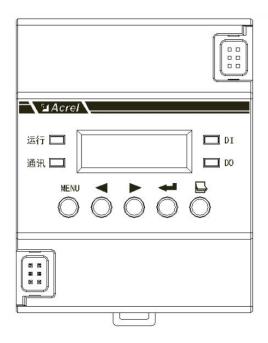


Figure 5 panel schematic diagram

5.1 Definlight definition

5.1.1 Light light of main module

(1) The ASL220-Sx / 5 Main Module indicator light

Operating indicator	Fllink (about once per second when the module is in normally)	
light (green)		
Communication	Blink (flash once during module ALIBUS communication)	
indicator light (green)	Long light (bus congestion)	
DI(red)	Long light (DI signal input detected)	

DO(red) Lo	ng light (module output switch quantity signal)
------------	---

(2) ASL210-Sx / 5 main module indicator light

Operating indicator	Fllink (about once per second when the module is in normally)
light (green)	
A Communication	Blink (flash once during module ALIBUS communication)
indicator lamp (green)	Long light (bus congestion)
M communication	Blink (flash once during ModBus communication)
indicator lamp (green)	
DI(red)	Long light (DI signal input detected)
DO(red)	Long light (module output switch quantity signal)

.25.1 From the module indicator light

From the module indicator light in green / red:

M key	After entering the key control mode, the red light is always on; not on
	under normal operation
A, B, C, D key	The green light is always on when the relay is closed; the light is not
	on when the relay is disconnected

5.2 Key-press operation

- 5.2.1 Description of the main module keys
- (1) ASL220-Sx / 5 main module button
- \bullet ASL220-Sx / 5 main module has five keys: MENU menu, left, right, return and page turning. The module can be modified to address and set parameters by pressing the button.

	In the non-programming mode, press this key to enter the
	programming mode, prompt for the password, or return to the
MENU menu key	previous menu
	In programming mode, used to return to the previous menu, or
	exit the programming mode
	Unprogrammed mode: used to switch display interface, cursor
↓ Left or right ▶	displacement, or password
Left of fight	Programming mode: for changes to the current settings, the shift
	of the cursor
	For menu item selection confirmation, and access to the next
	level of menu
≠ return key	State display interface: long press the return key to enter the
	channel control interface
	Short press the return key to enter the power display interface
☐ Turn the page	Unprogrammed mode: used to shift the cursor when you enter
key	the information query interface or enter a password

Programming mode: for cursor displacement, or linkage setting
interface, for page switching

(2) ASL210-Sx / 5 main module button

ASL210 The main module has a test button and ten dial codes, which can realize self-test, address setting and linkage setting functions.

(I) Test keys

When the code is not dialed to "OFF", press the test button for 3 seconds to enter the self-test mode.

(二) dial-up

1	2	3	4	5	6	7	8	9	10
RS485 Address: 1-63						obli	gate	link	age
	Note 1: on 0: off								

1 RS485 address

address	1	2	3	4	5	6
1	1	0	0	0	0	0
2	0	1	0	0	0	0
63	1	1	1	1	1	1

(2) Linkage function

Note: This is only ASL210-Sx / 5 linkage; see 5.3.6 DI / DO linkage for ASL220-Sx / 5.

7,8 Dial-up code: invalid, function reserved

9 Code: linkage mode selection, mode 0 means that when the DI signal input is detected, the channel moves according to the preset action value

Mode 1 represents that the channel moves according to the preset action value when the DI signal input is detected; when the DI signal withdrawal is detected, the channel moves backwards according to the preset action value

10 Dial code: linkage function enabled, 0 represents off, 1 represents on;

linkage	9	10
DI: 0->1	0	1
DI: 0->1 1->0	1	1

The opening of channels in ASL210-Sx / 5 and the execution of channel action should be set by ModBus-RTU. The relevant register definition is detailed in "7.3.2 DI Settings Address Table".

Example 1: Set DI1 linkage, DI1 detects 1-8 channels when signal arrival; 1-8 channels after signal removal.

Step 1: open the linkage function, set it to mode 1:9,10 dial code to on terminal;

Step 2: Enable the 1-8 channel: register 0x0105,0x0106 write 0x0000,0x00ff;

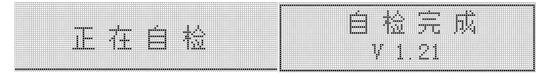
Step 3: Set the 1-8 channel action value as 0: register 0x0107,0x0108 write 0x0000,0x00ff;

Note: The action value of "1" indicates the corresponding channel combination, and "0" indicates the corresponding channel fraction

5.2.2 Description of the keys from the module

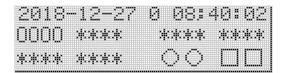
The control function can be realized from the module button: long press and short press.

C1	In the control mode, short pressing M can close or divide the channel, and short
Short press	pressing A, B, C, D can close or divide the corresponding channel
Long press	After pressing the M key for 3s, you can enter the control mode; pressing again
	for 3s will exit the control mode
	The control mode is also automatically withdrawn after 15s without the operation


5.3 liquid crystal display

ASL220-Sx / 5 type comes with liquid crystal display, with switch drive status query, information query, time and timing plan query and Settings, DI / DO linkage query and Settings, RS485 communication function query and Settings, other parameters query and Settings.

5.3.1 Switch drive status query


1) Power-on, shutdown and self-test

At the moment of power up, the switch drive interface is shown in the following figure, all indicator lights are on at the same time, the module conducts self-test, the interface is shown in the following figure, all indicator lights are off in turn, and the final operation indicator lights flicker to enter the normal monitoring state.

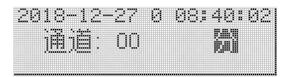
2) State display interface

After self-test, enter the state display interface. The first line shows the current date, week and time, and the bottom two rows show the channel status, output (DO) and input (DI) status of each module respectively.

Note: □ represents DI disconnected, ■ represents DI closed, ○ represents DO disconnected, and ● represents DO closed.

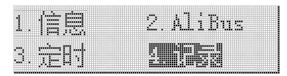
0 means that the channel is divided, 1 means that the channel is closed, * the loop is not connected, - -means that the loop is disconnected.

3) Channel recording interface


In the status display interface, press the left or right button to enter the channel usage record interface. The first line displays the current status of the channel and the number of opening and closing times of the channel, and the second

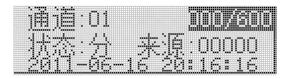
line displays the cumulative closing time of the channel. On the channel record screen, press the left or right button to switch to the next channel record.

4) Channel control interface

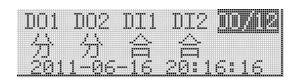

Press Enter for 3s on the status display interface to enter the channel control interface. You can split and close the channel of the slave module. The interface displays the channel to be controlled and its control status. After testing, press the MENU key to exit.

Note: Channel 00 means all channels, channel 01 represents the first channel, and so on.

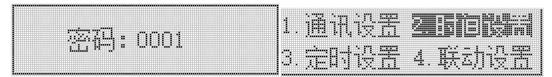
5.3.2 Information query


☐ Under the status display interface, press the page turning key to enter the information query interface, press the left key or the right key to switch the record, and press the return key to enter. ◆ ▶

♦ In the information query interface, press the left button or the right button to switch switch record, open machine, DIDO record, press the return key to enter.


① Switch record interface can view 600 switch action records, the interface shows the channel, status, source and time of each action. Press the left or right button to switch the next record.

② Open machine interface can view 10 modules open machine records, the interface shows the channel status after each startup (shutdown) and the time of boot (shutdown). Press the left or right button to switch the next record. •



③ DIDO record interface can view 12 DI / DO action records. The interface displays the state of the DI / DO after each action and the time of the action. Press the left or right button to switch the next record. •

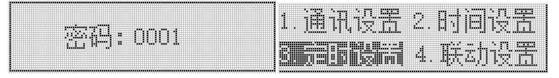
5.3.3 Time setting

Press MENU to enter the programming password interface: press the flip key and left or right key, enter the user password (the default password is 0001), and press the enter key to enter. After the password is correct, enter the programming interface. Press the left button or the right button to switch the time setting, and press the return key to enter the next level menu for setting.

(After entering the password correctly, press the return key to enter)

Under the "Time Settings" interface, the year, month, day, week (Sunday, represented by 0), time, time zone, longitude, latitude and latitude can be modified or set;

Note: +08 means the East Eight, -08 means the West eight, other time zones and so on.


	经度: E 180.00	
时间: 12:12:12 +08	纬度: N 90.00	

(Press the left or right button continuously)

After the setting is completed, press MENU to return until whether to save the setting interface. Then select whether to save the data by pressing the left or right button, and press Enter to confirm and exit the setting interface.

5.3.4 Timing schedule setting

Press the MENU key, enter the programming password interface, press the page turn key or the left key, enter the user password (the default password is 0001), and press the enter key to enter. After the password is correct, enter the programming interface. Press the left button or the right button to switch the timing setting, and press the return key to enter the next level menu for setting.

(Press the left key or the right key to select the timing setting, and press the Enter key to confirm)

Under the "timing setting" interface, press the left or right keys to switch the scheduled tasks and the scheduled tasks, and press the return key to enter. In the interface of "timing setting", select the first line "Zero zero" and press the return key to confirm, which can clear all the regularly specified tasks; select "Zero zero" in the second line to confirm, which can clear all the scheduled tasks.

加筒规制 [] [] [] [] [] 2. 清零 3. 预约定时任务 4. 清零

(1) Under the interface of "regular tasks", 30 regular tasks can be set or modified. The first interface can set or modify the task time and type (the timing to the channel, the timing to the channel); the second interface can set or modify the channel to be controlled (1 means that the channel is enabled, 0 means that the channel is not enabled).

任务:**则** 时间 00:00 分 01-12: 0000 0000 0000 星期:日—二三四五六 13-24: 0000 0000 0000

(Press the page flip button)

(2) Under the "Appointment Scheduled Task" interface, 24 scheduled tasks can be set or modified. The first interface can set or modify the task time and type (the timing to the channel, the timing to the channel); the second interface can set or modify the channel to be controlled (1 means that the channel is enabled, 0 means that the channel is not enabled).

任务:01 类型:分 01—12: 0000 0000 0000 时间:2020—10—01 19:10 13—24: 0000 0000 0000

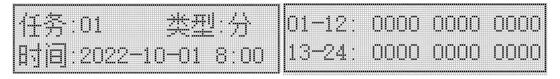
(Press the page flip button)

After the setting is completed, press MENU to return until whether to save the setting interface. Then select whether to save the data by pressing the left or right keys, and press the return key to confirm and exit the setting interface.

5.3.5 Timed plan view

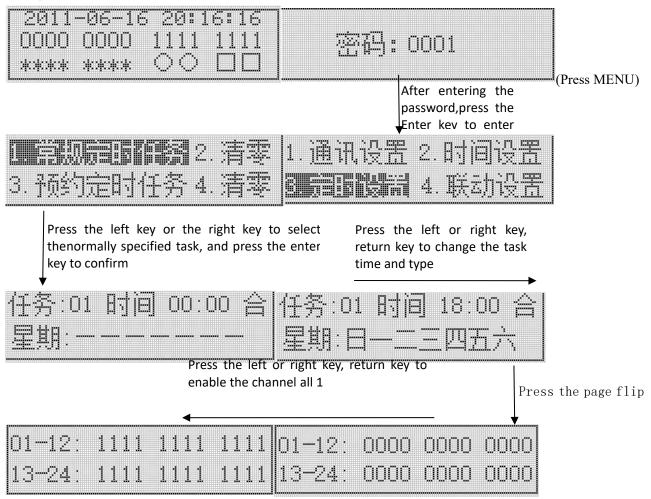
Under the status display interface, press the page turning key to enter the information query interface, press the left key or right key to switch timing, press the return key to enter the next level menu for viewing. Under the timing interface, press the left or right button to switch the scheduled tasks and the scheduled tasks, and press the return key to enter. ◆ ▶

1.信息。 2. ALiBus **训售规制通知 3. 预约**定时任务

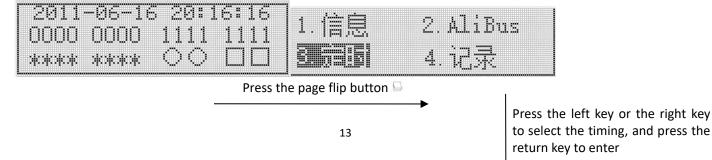

(Press the left key or the right key to select the timing, and press the Enter key to confirm)

(1) The often specified task interface can view 30 tasks. The first interface shows the time and type of each task (the timing reaches the channel opening, the timing reaches the channel closing) and week, and the second interface displays the controlled channel. Press the left button or the right button to switch the next task. ◆ ▶

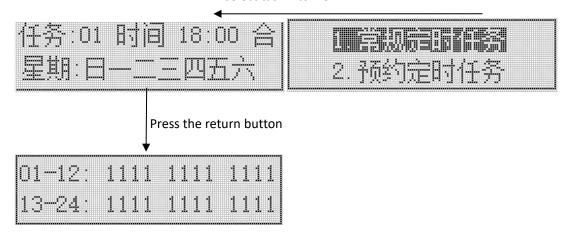
任务:01 时间 00:00 分 01-12: 0000 0000 0000 星期: 日—二三四五六 13-24: 0000 0000 0000


(Press the return button)

(2) The scheduled timing task interface can view 24 tasks. The first interface shows the type of each task (the timing to the channel points, the timing to the channel closing) and the time, and the second interface displays the controlled channel. Press the left button or the right button to switch the next task. ◆ ▶

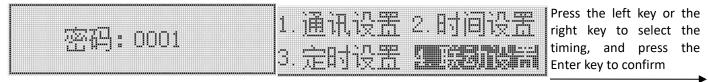

(Press the return button)

Example 1: Set the regular task, all channels at 18:00 every day.



After the setting is completed, press MENU to return until whether to save the setting interface, select "Yes" by pressing the left or right button, and press Enter to confirm the saving of data and exit the setting interface.

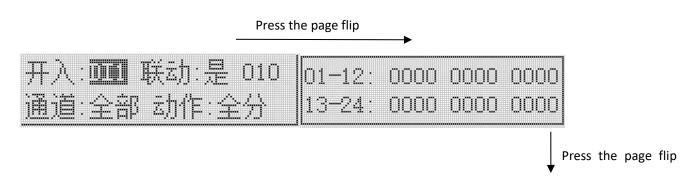
Example 2: View the timing task set by Example 1.


Select the regular task and press the return key to enter. Press left or right to select task 1 to view

5.3.6 DI / DO linkage

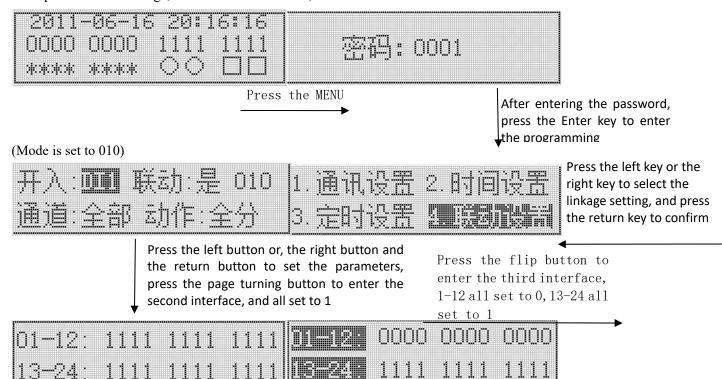
Note: Here is the linkage description of ASL220-Sx / 5. For the DI / DO linkage of ASL210-Sx / 5, see the "5.2 Key Operation" section.

Press MENU to enter the programming password interface: press the flip key and left or right key, enter the user password (the default password is 0001), and press the enter key to enter. After the password is correct, enter the programming interface. Press the left key or right key to switch the linkage setting and press the return key to enter.

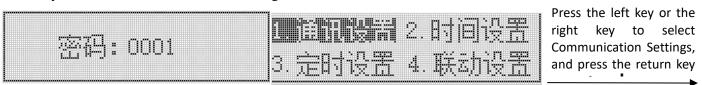

Under the "Linkage Settings" interface, the linkage function of DI1 and DI2 can be set. The first interface can set the DI1 / DI2 linkage closing opening, mode setting, channel opening, and the execution of channel action.

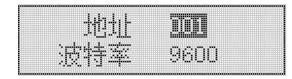
If you only need to open the linkage function of part of the channel, you need to set the channel to be controlled (1 is enabled, 0 means the channel is not enabled).

If you need to control the action of some channels, some channels are divided, you need to enter the third interface to set the corresponding channel action (1 means that the channel is enabled, 0 means that the channel is not enabled).


Note: "Yes" means that DI linkage is on and "No" means that DI linkage is off.

"01" means the corresponding DI detects the incoming signal action; "010" means the detected action when the signal comes and moves again when the signal is removed.

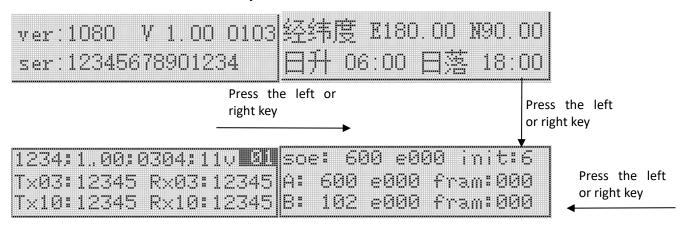

Example 3: Set DI1 linkage, DI1 and 13-24 channels; 1-12 channels and 13-24 channels.


After the setting is completed, press MENU to return until whether to save the setting interface, select "Yes" by pressing the left or right button, and press Enter to confirm the saving of data and exit the setting interface.

5.3.7 RS485 communication settings

Press MENU to enter the programming password interface: press the flip key and left or right key, enter the user password (the default password is 0001), and press the enter key to enter. After the password is correct, enter the programming interface. Press the left button or the right button to switch the communication Settings, and press the return key to enter the next level menu for setting.

Under the "Communication Settings" interface, the RS485 mailing address and port rate can be set;

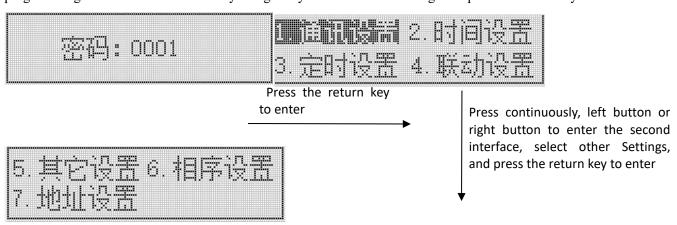


5.3.8 Other Parameters and information

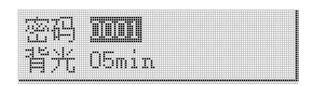
- 1) Information query
- Under the status display interface, press the page turning key to enter the information query interface, press the left key or, the right button to switch the information, and press the return key to enter.

Under the information interface, the first interface displays the equipment information of the module, the second interface displays the longitude and latitude and the corresponding sunrise and sunset time, and the third interface displays the module communication information. The fourth interface begins and displays the communication information of each slave module screen by screen.

2)ALIBUS query

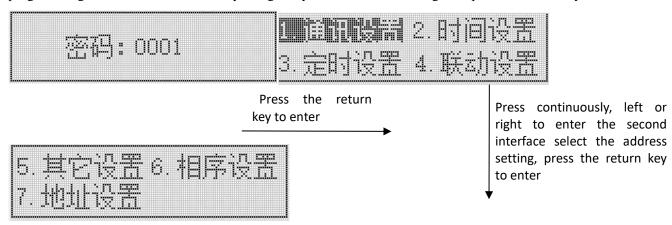

Under the status display interface, press the page turning key to enter the information query interface, press the left key or, and the right key to switch ALIBUS, and press the return key to enter.

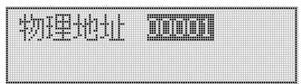
At the ALIBUS interface, the first and second interfaces displays the communication information of the ALIBUS.



3) Other Settings

Press MENU to enter the programming password interface: press the flip key and left or right key, enter the user password (the default password is 0001), and press the enter key to enter. After the password is correct, enter the programming interface. Press the left key or right key to switch other Settings and press the return key to enter.


Under the Other Settings screen, you can change the password and the backlight time.


After the setting is completed, press MENU to return until whether to save the setting interface. Then select whether to save the data by pressing the left or right keys, and press the return key to confirm and exit the setting interface.

4) Modify the physical address

Press MENU to enter the programming password interface: press the flip key and left or right key, enter the user password (the default password is 0001), and press the enter key to enter. After the password is correct, enter the programming interface. Press the left key or right key to switch other Settings and press the return key to enter.

Under the Address Settings interface, you can modify physical addresses.

After the setting is completed, press MENU to return until whether to save the setting interface. Then select whether to save the data by pressing the left or right keys, and press the return key to confirm and exit the setting interface.

6. Functional application

All functions can be set in configuration software. The parameter settings are described below

6.1 The heartbeat message

Heartbeat messages are uploaded between 0 to 255s, and 0 is not sent

6.2 General functions

- Power loss state: close, open, and keep the original state unchanged
- Power on state: off, on and keep the original state unchanged
- ➤ Control group address: 10 settings, range: 0-65535

6.3 Scene function

- > Scene control group address can be set to 3, range 0-65535
- Different group addresses can be set with 5 scene numbers, scene number range 0-255,0 is disabled

➤ Different scene numbers correspond to different control actions

6.4 Time function

➤ Delay time of lights off: range: 0-65535 in seconds

> Time control group address can be set in 3, range: 0-65535

7. Newsletter guide

7.1 Interface Overview

The switch drive supports RS485 communication and uses Modbus-RTU to communicate with our EMS integrated energy efficiency management system or third-party platform protocol. Default communication settings: address is 001 and port rate is 9600.

7.1.1 Transmission mode

Information transmission is asynchronous, and in bytes, the communication information transmitted between the host and the slave is in 11-bit format, including 1 start bit, 8 data bits (the lowest effective bit is sent first), no parity bit, and 1 stop bit.

7.1.2, information frame format

		CRC	
address	FC	data field	check
code			code
1 Bytes	1 Bytes	n byte	2 Bytes

Address code: The address code is at the beginning of the frame, consisting of a byte (8-bit binary code), the decimal is 0~255, and the maximum can be set to 247. These bits indicate the address of the user-specified terminal device that will receive host data from and connected to it. The address of each terminal device must be unique, and only the addressed terminal responds to a query containing that address. When the terminal sends back a response, the slave address data in the response tells the host machine which terminal is communicating with it.

Function code: The function code tells the addressed terminal what functions to perform. The following table lists the function codes used for the series of devices, and their meaning and function.

function	definition	operate		
Read the data		Get the current binary value for one or more		
0311	register	registers		
1011	Preset multiple	Set the binary value into a series of		
10H	registers	multiple registers		

Data area: The data area contains the data required for the terminal to perform specific functions or the data collected when the terminal responds to the query. The content of these data may be numerical values, reference addresses, or set values. For example, the function code tells the terminal to read a register, and the data area needs to indicate which register to start from and how many data to read. The embedded address and data vary according to the type and the different contents between the slave.

CRC check code: The Error check (CRC) domain takes up two bytes and contains a 16-bit binary value. The CRC values are calculated by the transmission device and then attached to the data frame, the receiving device recalculates

the CRC values when receiving the data and then compares with the values in the received CRC domain, and an error occurs if the two values are not equal.

7.2 Introduction to the function code

7.2.1 Function code 03H: Read register

This function allows the user to obtain the data collected and recorded by the device and the system parameters. There is no limit to the number of data requested by the host at a time, but it cannot exceed the defined address range.

The following example is the address 001, ASL220-S8 / 5 small power switch drive with port rate of 9600 reading three collected basic data (each address in the data frame) to read the current time (year, month, day, day, hour, minutes and seconds) as an example, where the register address of year and month is 0000H, the register address of day and time is 0001H, minutes and seconds is 0002H, and the current time is 13:27:9 seconds on May

Host sent	transmitte	
		d
		informatio
		n
		transmitte
		r data
address code	01Н	
FC		03Н
start address	high byte	00Н
	lower byte	00Н
Number of	high byte	00Н
registers		
	lower byte	03Н
	1	

Send from t	transmitt			
	ed			
	informati			
	on			
	transmitt			
		er data		
address code	01Н			
FC		03Н		
Byte number	r	06Н		
The 0000H	high byte	16H		
register	register lower			
data				
0001H	high byte	03Н		

3,2022.

7.2.2 Function code 10H: Write the register

The function code 10H allows the user to change the contents of multiple registers, and the time date in the device may be written with this function number. The host can write up to 16 (32 bytes) of data at a time.

The following example is a small power switch driver with address 001 and baud rate 9600, channel 1-16 writes closed operation, namely 0009H writes FFFF.

Host sent		transmit ted informat ion transmit ter data		Return machi	from the	return information
address code		01H		address code		01H
FC	FC			FC		10H
start	high byte	ООН		start	high byte	ООН
address	lower byte	08Н		address	lower byte	08Н
Number of	high byte	ООН		Number of	high byte	ООН
registers	lower			registers	lower	

7.3 Drive parameter address table

7.3.1 Drive real-time status address table

order number	address	parameter	read-w rite	scale	type
0x0000 high level 1	0x0000 high level	year	R/W	0-99 Note: Series 210 this address is reserved	uint8
		moon	R/W	1-12 Note: Series 210 this address is reserved	uint8
2	0x0001 high level	sun	R/W	1-31 Note: Series 210 this address is reserved	uint8
2	2 0x0001 low level	time	R/W	0-23 Note: Series 210 this address is reserved	uint8
3	0x0002 high level	component	R/W	0-59 Note: Series 210 this address is reserved	uint8
	0x0002 low	second	R/W	0-59	uint8

	level			Note: Series 210 this	
				address is reserved	
				The 0-6 stands for Sunday-	
	0x0003 high		D/W	-Saturday	0
	level	week	R/W	Note: Series 210 this	uint8
4				address is reserved	
	0x0003 low	obligate			uint8
	level	oongate			unito
				No input for bit0=0, and	
				DI1	
				With bit0=1, DI1 has input	
5	0x0004	on-off input	R	No input for bit1=0, and	uint16
				that for DI2	
				Bit $1 = 1$, and DI2 has	
				input	
	0x0005 Switch outp			Bit $0 = 0$, and the DO 1 is	
		Switch output	R/W	not closed	uint16
				Bit $0 = 1$, and the DO 1 is	
6				closed	
·				Bit $1 = 0$, and the DO 2	
				does not close	
				Bit $1 = 1$, and the DO 2 is	
				closed	
				The bit0-bit7 indicates the	
				channel 17 – 24 and the	
				maximum channel 24	
	0x0006			Bit $0 = 1:10$ close the	
				channel 17	
				Bit $0 = 0$: channel 17	
7-8		Switch state	R/W	points	uint32
7-0				and the like	
				Blot 0-bit15 indicates lanes	
				1 – 16	
	0x0007			Bit $0 = 1$: channel 1 is	
				closed	
				bit0 = 0: channel 1 point	
				and the like	

9-10	0x0008	Write to the fit state	W	The bit0-bit7 indicates the channel 17 – 24 and the maximum channel 24 Bit 0 = 1:10 close the channel 17 and the like	uint32
	0x0009	Write to the fractional state bits		bit0-bit15 indicates channel 1-16; bit0 = 1: channel 1, and so on	
11-12	0x000A		W	The bit0-bit7 indicates the channel 17 – 24 and the maximum channel 24 Bit 0 = 0: channel 17 points and the like bit0-bit15 indicates channel	uint32
	0x000B			1-16; bit0 = 0: channel 1; and so on	
13-36	0x000C-23	Channel 1-24 state	R/W	0 points, 1 close, 0xFFFF means that the loop is not available 0xEEEE indicates the loop fault	uint16
37-232	0x0024-E7	obligate			

7.3.2 Parameter setting address table

number	address	parameter	Read /	scale	type
			write		
1	0x0101	address	R/W	1-247 Note: The 210 series drives only manually set the address 1-63	uint8
2	0x0102	obligate			
3	0x0103	Baud rate	R/W	4800.9600.19200.38400	uint8
4	0x0104 high level	The DI1 linkage function	R/W	0 is turned Off; 1 and is turned on Note: The 210 series drives	uint8

		are only set manually	
		0 pattern 0(0->1)	
0.01041	DI1 linkage	1 pattern 1(0->1,1->0)	:40
0x0104 low level	mode	Note: The 210 series drives	uint8
		are only set manually	

5-6	0x0105	DI1 linkage, switch association loop	R/W	The bit0-bit7 indicates the channel 17-24; the maximum channel 24 Bit 0 = 0: Channel 17 is not enabled Bit 0 = 1: Enable channel 17 and the like	uint32
	0x0106			Bit 0-bit15 indicates channel 1-16; bit0 = 0: Channel 1 is not enabled Bit 0 = 1: Enable channel 1 and the like	
7-8	0x0107	DI1 linkage, switch associated	R/W	The bit0-bit7 indicates the channel 17-24; the maximum channel 24 Bit 0 = 0: channel 17 points Bit 0 = 1:10 close the channel 17 and the like	uint32
	0x0108	action value		Blot 0-bit15 indicates lanes $1-16$ bit0 = 0: channel 1 point Bit 0 = 1: channel 1 is closed and the like	
9	0x0109 high level	The DI2 linkage function	R/W	0 is turned Off; 1 and is turned on Note: Series 210 this	uint8

				address is reserved	
				0 pattern 0(0->1)	
	0x0109 low level	DI2 linkage		1 pattern 1(0->1,1->0)	
		mode		Note: Series 210 this	uint8
				address is reserved	
				The bit0-bit7 indicates the	
				channel 17-24; the	
				maximum channel 24	
				Bit $0 = 0$: Channel 17 is not	
	0.0104			enabled	
	0x010A			Bit 0 = 1: Enable channel	
				17	
		DI2 1:1		and the like	
10-11		DI2 linkage,	R/W	Note: Series 210 this	uint32
10-11		switch		address is reserved	
	0x010B	association loop		Blot 0-bit15 indicates lanes	
				1 – 16	
				Bit $0 = 0$: Channel 1 is not	
				enabled	
				Bit 0 = 1: Enable channel 1	
				and the like	
				Note: Series 210 this	
				address is reserved	
				The bit0-bit7 indicates the	
				channel 17-24; the	
				maximum channel 24	
				Bit $0 = 0$: channel 17 points	
	0x010C			Bit $0 = 1:10$ close the	
		DI2 linkage,		channel 17	
12-13		switch associated	R/W	and the like	uint32
12 13		action value	10 11	Note: Series 210 this	uint32
		- detion value		address is reserved	
				Blot 0-bit15 indicates lanes	
				1 – 16	
	0x010D			bit0 = 0: channel 1 point	
				Bit $0 = 1$: channel 1 is	
				closed	

	and the like	
	Note: Series 210 this	
	address is reserved	

7.3.3 Timing address table

7.3.3.1 Often specified time address table

	210 Series this feature is				
number	address	parameter	Read /	scale	type
			write		
1-2	0x1000 high level	longitude	R/W	-180~180	float
	0x1001 low level	Tongitude	10 11	100 100	Hour
3-4	0x1002 high level	latitude	R/W	-90~90	float
	0x1003 low level	latitude	IX/ W	-90~90	
5	0-10041:-1-11	Sunrise time		0-23	:40
	0x1004 high level	(when)	D		uint8
	0.1004111	Sunrise time	R	0-59	0
	0x1004 low level	(points)			uint8
		Sunset time		0-23	
	0x1005 high level	(when)			uint8
6		Sunset time	R	0-59	
	0x1005 low level	(points)			uint8
				The bit0-bit7 indicates the	
	0x1006			channel 17-24; the	
				maximum channel 24	
				Bit $0 = 1:17$ channel	
				enabled timing	
				Bit $0 = 0$: Channel 17 does	
		Timing task 1		not enable by analogy	
7-8		circuit setting	R/W	Blot 0-bit15 indicates lanes	uint32
				1 – 16	
				Bit 0 = 1: Channel 1 has	
	0x1007			enabled timing	
	on or			Bit $0 = 0$: Channel 1 is not	
				enabled	
				and the like	
9		Timed Teels 1			
9	0x1008 high level	Timed Task 1	R/W	bit0-bit6	uint8
		Execution Time		Representing the Sunday-	

		(week)		-Saturday		
		(week)		Bit $0 = 0$: The timing is not		
				started on that day		
				The bit0 = 1 startup timing		
				for that day		
		Timed Task 1		0-23 stands for 0-23,24 for		
	0x1008 low level	Execution Time		sunrise, 25 for sunset	uint8	
	OX1000 IOW ICVEL	(when)		Sumse, 25 for sumset	umto	
10		Timed task 1		0-59		
	0x1009 high level	Execution time			uint8	
	_	(points)				
			R/W	Timing task 1 Operation		
	0x1009 low level	Execute the		setting: 00: minutes / 01:	uint8	
		operation		close		
11-14	0x100A-0x100D	The specific r	egister me	eaning can refer to the timing ta	ask 1	
15-18	0x100E-0x1011	The specific register meaning can refer to the timing task 1			ask 1	
19-22	0x1012-0x1015	The specific r	The specific register meaning can refer to the timing task 1			
23-26	0x1016-0x1019	The specific r	egister me	eaning can refer to the timing ta	isk 1	
27-30	0x101A-0x101D	The specific r	The specific register meaning can refer to the timing task 1			
31-34	0x101E-0x1021	The specific r	egister me	eaning can refer to the timing ta	ask 1	
35-38	0x1022-0x1025	The specific r	egister me	eaning can refer to the timing ta	isk 1	
39-42	0x1026-0x1029	The specific r	egister me	eaning can refer to the timing ta	isk 1	
43-46	0x102A-0x102D	The specific r	egister me	eaning can refer to the timing ta	ask 1	
47-50	0x102E-0x1031	The specific r	egister me	eaning can refer to the timing ta	ask 1	
51-54	0x1032-0x1035	The specific r	egister me	eaning can refer to the timing ta	ask 1	
55-58	0x1036-0x1030	The specific r	egister me	eaning can refer to the timing ta	ask 1	
59-62	0x103A-0x103D	The specific r	egister me	eaning can refer to the timing ta	isk 1	
63-66	0x103E-0x1041	The specific r	egister me	eaning can refer to the timing ta	ask 1	
67-70	0x1042-0x1045	The specific r	egister me	eaning can refer to the timing ta	ask 1	
71-74	0x1046-0x1049	The specific r	egister me	eaning can refer to the timing ta	ask 1	
75-78	0x104A-0x104D	The specific r	egister me	eaning can refer to the timing ta	ask 1	
79-82	0x104E-0x1051	The specific r	egister me	eaning can refer to the timing ta	ask 1	
83-86	0x1052-0x1055	The specific r	egister me	eaning can refer to the timing ta	ask 1	
87-90	0x1056-0x1059	The specific r	egister me	eaning can refer to the timing ta	ask 1	
91-94	0x105A-0x105D	The specific r	egister me	eaning can refer to the timing ta	ask 1	
95-98	0x105E-0x1061	The specific r	egister me	eaning can refer to the timing ta	ısk 1	
99-102	0x1062-0x1065	The specific r	egister me	eaning can refer to the timing ta	ask 1	

103-106	0x1066-0x1069	The specific register meaning can refer to the timing task 1
107-110	0x106A-0x106D	The specific register meaning can refer to the timing task 1
111-114	0x106E-0x1071	The specific register meaning can refer to the timing task 1
115-118	0x1072-0x1075	The specific register meaning can refer to the timing task 1
119-122	0x1076-0x1079	The specific register meaning can refer to the timing task 1
123-126	0x107A-0x107D	The specific register meaning can refer to the timing task 1

7.3.3.2 Scheduliming address table

number	address	parameter	Read /	scale	type
			write		
				The bit0-bit7 indicates the	
				channel 17-24; the	
				maximum channel 24	
	0x1100			Bit $0 = 1:17$ channel	
				enabled timing	
		Schedule the		Bit $0 = 0$: Channel 17 is	
1-2		timing task 1	R/W	not enabled, and so on	uint32
		loop setting		Blot 0-bit15 indicates lanes	
				1 – 16	
	0x1101			Bit $0 = 1$: Channel 1 has	
				enabled timing	
				Bit $0 = 0$: Channel 1 is not	
				enabled, and so on	
	0x1102 high level	Timing time	R/W	0-99	uint8
3		(years)			
	0x1102 low level	Timing time		1-12	uint8
		(months)			uiiito
	0x1103 high level	Timing time		1-31	uint8
4		(day)	R/W		
	0x1103 low level	Timing time		0-23	uint8
		(when)		V 20	371110
	0x1104 high level	Timing time		0-59	uint8
		(points)	_		371110
5			R/W	Timing task 1 Operation	
	0x1104 low level	operate		setting: 00: minutes / 01:	uint8
				close	

6-10	0x1105-0x1109	Appointment timing task 2 Please refer to the reservation timing task 1
11-15	0x110A-0x110E	Appointment timing task 3 Please refer to the reservation timing task 1
16-20	0x110F-0x1113	Appointment timing task 4 Please refer to the appointment timing task 1
21-25	0x1114-0x1118	Appointment timing task 5 Specific register meaning can refer to the appointment timing task 1
26-30	0x1119-0x111D	The appointment timing task 6 may refer to the appointment timing task 1
31-35	0x111E-0x1122	Appointment timing task 7 Specific register meaning can refer to the appointment timing task 1
36-40	0x1123-0x1127	Appointment timing task 8 Please refer to the appointment timing task 1
41-45	0x1128-0x112C	Appointment timing task 9 Please refer to the appointment timing task 1
46-50	0x112D-0x1131	Appointment timing task 10 The specific register meaning may refer to the reservation timing task 1
51-55	0x1132-0x1136	The appointment timing task 11 Please refer to the appointment timing task 1
56-60	0x1137-0x113B	The appointment timing task 12 Please refer to the appointment timing task 1
61-65	0x113C-0x1140	The appointment timing task 13 Please refer to the appointment timing task 1
66-70	0x1141-0x1145	Appointment timing task 14 Please refer to reservation timing task 1
71-75	0x1146-0x114A	The appointment timing task 15 Please refer to the appointment timing task 1
76-80	0x114B-0x114F	The appointment timing task 16 may refer to the reservation timing task 1
81-85	0x1150-0x1154	The appointment timing task 17 Please refer to the appointment timing task 1
86-90	0x1155-0x1159	Appointment timing task 18 Please refer to reservation timing task 1
91-95	0x115A-0x115E	The appointment timing task 19 Please refer to the appointment timing task 1
96-100	0x115F-0x1163	Appointment timing task 20 refer to reservation timing task 1
101-105	0x1164-0x1168	The appointment timing task 21 Please refer to the appointment timing task 1

106-110	0x1169-0x116D	Appointment timing task 22 refer to reservation timing task 1
111-115	0x116E -0x1172	Appointment timing task 23 refer to reservation timing task 1
116-120	0x1173-0x1177	Appointment timing task 24 Please refer to reservation timing task 1

7.3.4 Event record address table

7.3.4.1 Record address table of opening machine

number	address	parameter	Read /	scale	type
			write		
1	0x1200 high level	year	R	0-99	uint8
	0x1200 low level	moon	R	1-12	uint8
2	0x1201 high level	sun	R	1-31	uint8
2	0x1201 low level	time	R	0-23	uint8
_	0x1202 high level	component	R	0-59	uint8
3	0x1202 low level	second	R	0-59	uint8
4	0x1203 high level	type	R	0x0F means power on; 0 xF 0 means power off	uint8
	0x1203 low level	channel 1-8	R	Bit 0 channel 1; bit7, channel 8; and so on 0 Points, 1	uint8
5	0x1204 high level	channel 9-16	R	Channel 8, bit 9; bit15, channel 16; and so on 0 Points, 1	uint8
	0x1204 low level	channel 17-24	R	Channel: bit: 0:17; bit: 7, channel: 24; and so on 0 Points, 1	uint8
6-10	0x1205-0x1209	The specific register meaning of the machine record 2 can refer to the machine record 1			
11-15	0x120A-0x120E	The specific meaning of the register can refer to the opening machine record 1			
16-20	0x120F-0x1214	The specific register meaning can refer to the opening machine record 1			
21-25	0x1215-0x1219	The specific register meaning of the 5 can refer to the opening machine record 1			
26-30	0x121a-0x121E	The specific register meaning can refer to the opening machine record 1			
31-35	0x121F-0x1224	The specific register meaning of open machine record 7 may refer to			

		open machine record 1	
36-40	01225 01220	The specific meaning of the register can refer to the opening	
	0x1225-0x1229	machine record 1	
41-45	01224 0122E	The specific register meaning of the 9 can refer to the opening record 1	
	0x122A-0x122E		
46-50	0 1225 0 1224	The specific register meaning of the opening record 10 may refer to	
	0x122F-0x1234	the opening record 1	

7.3.4.2 DIDO Record address table

Note: 210 Series this feature is not available

number	address	parameter Read / scale		type	
		write			
1	0x1300 high level	year	R	0-99	uint8
	0x1300 low level	moon	R	1-12	uint8
2	0x1301 high level	sun	R	1-31	uint8
2	0x1301 low level	time	R	0-23	uint8
3	0x1302 high level	component	R	0-59	uint8
3	0x1302 low level	second	R	0-59	uint8
	0x1303 high level	bit zone	R	0 xAA indicates that the record exists	uint8
4	0x1304 low level	DI, DO state	R	bit0 DI1; bit1 DI2 bit4 DO1; bit5 DO2 0 Points, 1	uint8
5-8	0x1305-0x1308	DIDO record 2. Please refer to DIDO record 1			
9-12	0x1309-0x130C	DIDO record 3. Please refer to DIDO record 1			
13-16	0x130D-0x1310	DIDO record 4. Please refer to DIDO record 1			
17-20	0x1311-0x1314	DIDO record 5 Please refer to DIDO record 1			
21-24	0x1315-0x1318	DIDO record 6. Please refer to DIDO record 1			
25-28	0x1319-0x131C	DIDO record 7 Please refer to DIDO record 1			
29-32	0x131D-0x1320	DIDO record 8. Please refer to DIDO record 1			
33-36	0x1321-0x1324	DIDO record 9. Please refer to DIDO record 1			
37-40	0x1325-0x1328	DIDO record 10 Please refer to DIDO record 1			
41-44	0x1329-0x132C	DIDO record 11 Please refer to DIDO record 1			
45-48	0x132D-0x1330	DIDO record 12 Please refer to DIDO record 1			

7.3.4.3 Switrecord address table

number	address	parameter	Read /	scale	type
	0x1400 high level	year	R	0-99	uint8
1	0x1400 low level	moon	R	1-12	uint8
2	0x1401 high level	sun	R	1-31	uint8
	0x1401 low level	time	R	0-23	uint8
	0x1402 high level	component	R	0-59	uint8
3	0x1402 low level	second	R	0-59	uint8
	0x1403 high level	source	R		uint8
4	0x1403 low level	obligate	R		uint8
5	0x1404 high level	number of channel	R	0x01 indicates channel 1 0x18 represents the channel 24	uint8
	0x1404 low level	CS	R	0 Points, 1	uint8
6	0x1405	Control group address	R	When the control command comes from the ALIBUS, representing the control group address 0x0001 represents the control group address 1; 0xFFFF represents the control group address 65535; and so on	uint16
7-12	0x1406-0x140B	Switch record 2. Please refer to switch record 1			
13-18	0x140C-0x1412	Switch record 3. Please refer to switch record 1			
19-24	0x1413-0x1419	Switch record 4. Please refer to switch record 1			
25-30	0x141A-0x142F	Switch record 5 Please refer to switch record 1			
31-36	0x1430-0x1435	Switch record 6 The specific register meaning can refer to the switch record 1			
By analogy, there are 600 switch records					

8. Common fault analysis and troubleshooting

- If the instrument operation indicator light and screen are not bright, please check whether the power supply is connected to AC220V, and then check whether the ALIBUS port is short circuit.
- Data cannot be read through the RS485 interface (ModBus _ RTU) after power on, Please check whether the
 address and the port rate are consistent.

9. matters need attention

- Before using the product, please check whether the appearance is in good condition, and find the seller in time if it is damaged.
- Connect the wiring correctly according to the instruction manual. Check the wiring carefully to ensure that the wiring is correct.
- After connecting the product to the bus, ensure that the operation indicator light is normal. Operation the programming key to ensure that the key is stuck and the programming light is normal.
- Product installation and replacement to ensure that it is operated under power failure condition.
- The product can not directly replace the micro circuit breaker and other protection components.

amendant record

Revised edition	Revision time	Revised terms
V1.0	2022.09	New edition issued

Headquarters: Acrel Co., LTD.

Address: No.253 Yulv Road Jiading District, Shanghai, China

Fax: 0086-21-69158303

Web-site: www.acrel-electric.com E-mail: ACREL008@vip.163.com

Postcode: 201801

Manufacturer: Jiangsu Acrel Electrical Manufacturing Co., LTD.

Address: No.5 Dongmeng Road, Dongmeng industrial Park, Nanzha Street, Jiangyin

City, Jiangsu Province, China

TEL: 0086-510-86179966

Fax: 0086-510-86179975

Web-site: www.jsacrel.com

Postcode: 214405

E-mail: sales@email.acrel.cn