

AEM96 Three-phase Electricity Meter

User's Manual (V1.1)

Acrel Co., Ltd.

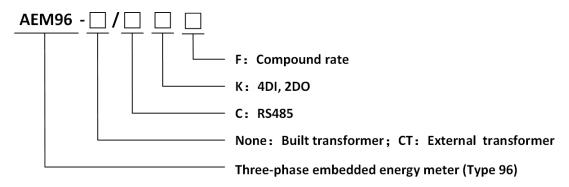
Declaration

The copyright is the property of Acrel. Any information in any paragraph or section cannot be extracted, copied or otherwise reproduced or propagated. Otherwise offenders shall take all consequences.

All rights are reserved.

Acrel reserves the right to modify the product specifications herein without notification.

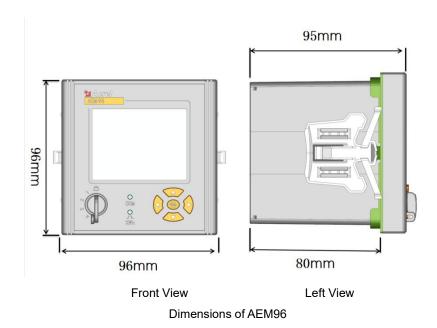
Please consult the local agent about the latest specifications before placing a purchase order.


Contents

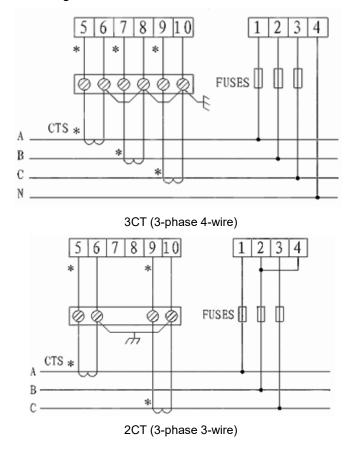
1 Overview	1 -
2 List of functions	1 -
3 Technical parameters	2 -
4 Overall dimensions (unit: mm)	3 -
5 Wiring and installation	3 -
6 Main function features	5 -
7 Operations and display	6 -
8 Communication instructions	- 10 -

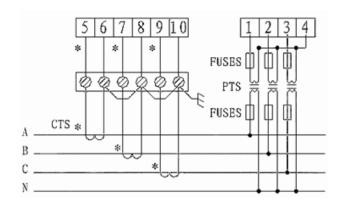
1 Overview

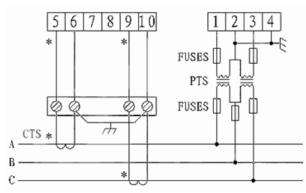
AEM three-phase embedded multi-function electricity meter is a smart meter designed for power supply system, industrial and mining enterprises and utilities to calculate the electricity consumption and manage the electric demand. It features the high precision, small size and simple installation. It integrates the measurement of all electrical parameters with the comprehensive electricity metering and management provides various data on previous 24 hours, previous 31 days and previous 12 months, checks the 63st harmonic content and the total harmonic content, realizes the remote communication and the remote control with switching input and relay output and boasts the alarm output. It is fitted with RS485 communication port and adapted to MODBUS-RTU or DL/T645-2007 protocol. AEM electricity meter can be used in all kinds of control systems, SCADA systems and energy management systems.


2 List of functions

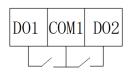
3 Technical parameters

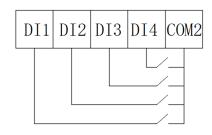

lt	em		Performance parameters	
Specification			3-phase 3-wire, 3-phase 4-wire	
·		Reference voltage, Un	AC380V、AC220V、AC100V、AC57.7V	
		Measuring range	0.7Un~1.3Un	
	Volta	Limit voltage	1.9Un	
	ge	Power dissipation	<0.05VA (single phase)	
		Impedance	>2MΩ	
Measure		Accuracy class	RMS, accuracy: 0.2 %	
ment		Measuring range	0.015-0.075(6)A	
	Curre nt	Power dissipation	<0.05VA (single-circuit rated current)	
		Accuracy class	RMS, accuracy: 0.2 %	
	Freque	ency	Active, reactive and apparent power, accuracy: 0.5%	
	Line fre	equency	45-65Hz, accuracy: 0.2 %	
	fracti	onal harmonic	2 nd -31 st harmonic, accuracy: ±5 %	
Metering	Electric energy		Active energy ((accuracy class: 0.5S) Reactive energy (accuracy class: 2)	
	Clock		≤0.5s/d	
Digital	Electric	cal pulse output	1-way active optical coupling output, 1-way reactive optical coupling output	
signal	Switchi	ing output	2-way relay output	
	Switch	ing input	4-way optical coupling input, , active +12V	
Commu	Port and communication protocol		RS485 port: Modbus RTU protocol	
nicatio n	Range of communication address		Modbus RTU: 0-247	
	Baud rate		Low rate (1200bps-9600bps) or high rate (1200bps-38400bps)	
	Workin	g temperature	-25℃-+60℃	
Environ ment	Extrem tempe	3	-35℃-+70℃	
	Relativ	e humidity	≤95% (without dewing)	
Working power			AC/DC power supply (voltage range: AC85V-265V, DC100-380V) Power dissipation: ≤1W, 2VA	


4 Overall dimensions (unit: mm)


5 Wiring and installation

5.1 Voltage and current signal terminals




3PT, 3CT (3-phase 4-wire)

2PT, 3CT (3-phase 3-wire)

5.2 Switching input/ output terminals


Switching output

Switching input

The switching output is realized by relay for remote control and alarm output.

The switching input is realized by switching signal input. The meter has a built-in +12V working power supply so that it does not require external power supply. The meter collects the external break-make information with switching input module and displays it locally. The switching input not only collects and displays the local break-time information but also provides the remote transmission, i.e. remote communication, with RS485.

5.3 Power supply terminal, RS485 communication terminal, pulse output terminal

Auxiliary power supply

Communication

Pulse terminals

Note: active energy / clock / reactive energy common pulse terminal, default: active energy pulse terminal

6 Main function features

6.1 Measurement

Measure all electrical parameters, including voltage U, current I, active power P, reactive power Q, apparent power S, power factor PF, frequency, 31st harmonic content and total harmonic content. The measured voltage U keeps one decimal place, the measured frequency F keeps two decimal places, the measured current I keeps three decimal places and the measured power P keeps four decimal places.

Example: U = 220.1V, f = 49.98HZ, I = 1.999A, P = 0.2199KW

6.2 Metering

Meter the current combined active energy, positive active energy, negative active energy, inductive reactive energy and capacitive reactive energy.

6.3 Tiered pricing

Set four time schedules and 4 time zones of year. A time schedule includes 12 day time periods and 8 rates (F1-F8). The basic idea of tiered pricing structure is to consider the electric energy as a commodity. The electricity price is higher during the sharp and peak periods while it is relatively lower during the off period. By means of economic lever, such pricing structure will balance the electricity consumption between sharp and peak periods and off period, improve the service efficiency of utility and increase the overall economic benefits.

6.4 Demand

Demand-related concepts are listed as follows:

Demand	Average power measured during the demand period
Max.	Maximum amount of demand during a specified period of time
demand	
Sliding	A recurrence method to measure the demand from any time point during a period shorter
window time	than the demand period. The demand measured by this means is called sliding demand.
willdow time	The recurrence time is sliding window time.
Demand	Time interval when the same average power is measured continuously, also known as
period	window time

The default demand period is 15 minutes and the default sliding window time is 1 minute.

Both demand period and sliding window time are adjustable. Refer to the details of setting in 7.3.

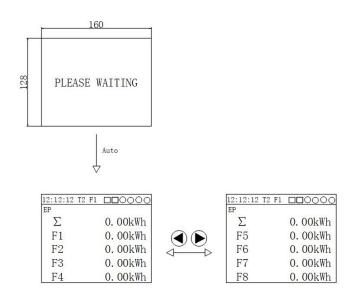
Measure four maximum demands, i.e. positive active, negative active, inductive reactive and capacitive reactive demands and the time of maximum demand.

6.5 Historical data

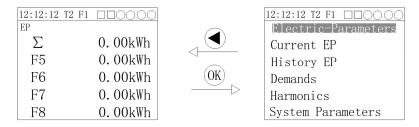
Record the historical data on electricity consumption covering previous 24 hours, previous 31 days and previous 12 months (including four quadrant and multi-rate tariff).

6.6 Switching input/output

There are two-way switching output and four-way switching input. The switching output is realized by relay for remote control and alarm output. The switching input not only collects and displays the local break-time information but also provides the remote transmission, i.e. remote communication, with RS485.

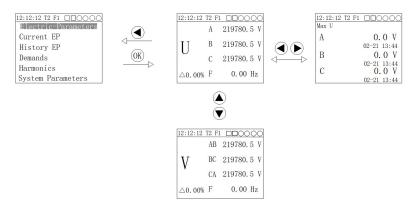

7 Operations and display

7.1 Key functions

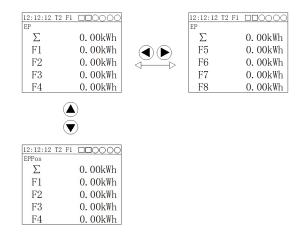

There are 5 keys in total, including 4 arrow keys and a middle OK key. Use the OK key to confirm and the left key to return to the previous page, refer to 7.2 for specific key operations.

7.2 Screens

The display interface shows combined active energy by default, the left and right keys switch the total, F1-F8 EP, as follows:


Press the OK key to enter the menu interface, where you can select electrical parameters, current energy, historical energy, demand, harmonics and system parameters. Press the up and down keys to select the interface you want to enter and confirm by pressing the OK key, as shown in the figure below:

Electric-Parameters


Use the up and down keys to switch the display type to show voltage, current, active

power, reactive power, apparent power, power factor, voltage and current phase angle respectively. In addition to power factor and voltage and current phase angle, pressing the left and right keys switches the display to show the current electrical parameter maximum and minimum values and the time of occurrence.

Current EP

Use the up and down keys to switch the current combination of active energy, forward active energy, reverse active energy, inductive reactive energy, capacitive reactive energy, and apparent energy, and the left and right keys to switch the total, F1-F8 energy display, by using the left and right keys to switch the display as shown below:

Electrical Energy Interface

History EP

Up and down keys to switch between hour, day and month freezing energy categories, right key to switch to modify the specific time and date, OK key to confirm to enter the selected moment energy, in the second line of the interface to display the historical time points (year - month - day hour:minute:second), left and right keys to switch between total, F1-F8 energy display.

Demands

Press the up and down keys to switch the demand type, OK key to confirm to enter the selected demand interface, in the current demand interface you can switch the up and down keys to switch the maximum demand/real time demand.

System Parameters

Includes communication address, baud rate, protocol, PT, CT, error and version number indication.

Harmonics

Contains a display of the 31 sub-harmonics and the total harmonic content, the number of harmonics displayed (odd for total odd harmonics, even for total even harmonics), press the up and down keys to switch between the 2nd and 31st harmonics.

7.3 Programming interface operations

The knob on the left side of the instrument is the programming selection key, which allows you to select programming interfaces 1, 2, 3 and 4 representing communication time setting, system setting, open out setting and first set of time table setting respectively.

Before entering each programming interface a password needs to be entered, if the password is correct the corresponding programming interface can be entered, if the password is incorrect the programming interface cannot be entered and you will have to wait for the password to be re-entered.

7.3.1 This programming interface mainly sets parameters such as meter communication, such as address and baud rate, etc. The setting interface is shown in the following figure:

Meter Properties

Addr: 001
Baud: 19200
Parity:None
PT: 0001.0
CT: 00001
Wiring:3P4L
Pulse: P MD:1/15
ID: 0000000000001

Communication and time setting interface

The pulse terminal function selection, when P is selected the pulse terminal outputs active energy pulses, when Q is selected the pulse terminal outputs reactive energy pulses, when T is selected the pulse terminal outputs time pulses;

The demand is the demand period and the slip time, there are four levels of selection, respectively the demand period is 15 minutes, 30 minutes, 45 minutes and 60 minutes, the corresponding slip time is also proportional, the principle is the demand period / slip time = 15;

7.3.2 This programming interface mainly sets the system parameters, such as password, backlight time, etc. The setting interface is shown in the following figure:

System Setting Interface

Backlight time: screen always on when set to 0;

7.3.3 This programming interface sets the type of switch output and the type of alarm, in which you can set whether the switch is an alarm output, the alarm threshold, delay time and pulse width of the alarm output, etc. The display is shown in the figure below

DO Setting					
	D01	D02			
Type:	OFF	OFF			
Value:	0.0000	0.0000			
Delay:	00.00	00.00			
Pulse:	000.0	000.0			

Alarm Setting Interface

Type is the alarm type, select OFF means not alarm output, for remote control function, after selecting OFF, other settings in the interface are invalid, except OFF, you can select U, I, two types of data <> alarm type, where Ux, Ix means any one of the voltage or current to meet the conditions of the alarm output, M1 to M4 means positive active demand, reverse active demand, positive reactive demand, reverse reactive demand, Reverse reactive power demand;

Value is the alarm threshold, the unit of voltage is V, the unit of current is A, the unit of power and demand is kW, all are secondary values.

Width is the pulse width, when this value is set to 0, the alarm is output as level, normally closed when the condition is met, normally open when it is not met; if it is not zero, e.g. set to 1.00, the relay will be closed for 1s when the condition is met, i.e. the unit is 1s.

Delay is the alarm delay, set to 0, no delay, immediate response, if not 0, set to 10.0, then delay 10.0 seconds after the response.

7.3.4 This programming interface allows you to set up an 8-segment time table, switching between the time zone table and the time table at the first line, with F1-F8 representing each of the 8 rates, the interface of which is shown below.

Zo	one				
1	00	00-00	5	00	00-00
2	00	00-00	6	00	00-00
3	00	00-00	7	00	00-00
4	00	00-00	8	00	00-00

Traff	ic			
Table	e1			
1 00	00:00	7	00	00:00
2 00	00:00	8	00	00:00
3 00	00:00	9	00	00:00
4 00	00:00	10	00	00:00
5 00	00:00	11	00	00:00
6 00	00:00	12	00	00:00

Time Table Setup Interface

Note: As the re-rate is an optional feature, the time and the current rate will be displayed in the top right corner of the regular display if the re-rate is optional, but the time and the current rate will not be displayed in the top right corner if the re-rate is not optional.

8 Communication instructions

RS485 port of electricity meter supports the MODBUS-RTU communication protocol. The baud rate of communication port can be set to 600bps, 1200bps, 2400bps, 4800bps, 9600bps, 19200bps and 38400bps. The check digit is set to None.

RS485 port is connected with shielded twisted wire. The wiring must consider the network layout, such as the length and route of communication line, position of host computer, network end resistor, communication converter, network expand-ability, network coverage and environmental electromagnetic interference.

注:

Note:

- 1. The wiring work must observe applicable requirements strictly.
- 2.Even though some meters do not require the communication temporarily, it is still necessary to connect them to RS-485 network for troubleshooting and test.
- 3.Select the double-color twisted wire, wherever possible, for RS-485 connection. For all RS485 ports, the color of wire at side A is same and the color of wire at side B is same too.
- 4.The maximum length of RS-485 bus (from the communication port of host computer to the end communication port of any connected meter) is 1200m.

8.1 Address list

The meter supports command 03H and 10H in the MODBUS-RTU protocol. Command 03H is to read several registers and command 10H is to write several registers. Users are responsible for checking the protocol data format. The following table lists the addresses of meter registers.

Address	Data	Length	Remark
0000Н	Address	2	
0001Н	Baud rate	2	1:9600;2:4800;3:2400;4:1200
0002Н	Running control byte	2	Note 1
0003Н	Backlight time	2	
0004Н	VT	2	Unsigned int

0005Н	CT	2	
0006Н	Common pulse selection	2	0: reactive pulse; 1: clock pulse
0007Н	Pulse constant	2	
0008Н	Sliding window time/ demand period	2	
0009Н	Password	2	
000АН~000СН	Date time	6	second , Minute , hour , day, month, Year
000DH~0014H	Time zone 1-4	16	Odd registers are number of 4 time lists, even registers are date(monomorphism) on high byte, day on low byte)
01E5H~01ECH	Time zone 5-8	16	Same as above
0015H∼002CH	Time schedule 1(old)	48	Odd registers are 12 periods of rate even registers are time(hour on high byte, minute on low byte)
002DH~0044H	Time schedule 2(old)	48	Same as above
7200Н~7217Н	Time schedule 1(new)	48	Even registers are 12 periods of rat odd registers are time(hour on hig byte, minute on low byte)
7218H~722FH	Time schedule 2(new)	48	
7230H~7247H	Time schedule 3	48	
7248H~725FH	Time schedule 4	48	
7260H~7277H	Time schedule 5	48	Same as above
7278H~728FH	Time schedule 6	48	
7290H~72A7H	Time schedule 7	48	
72A8H~72BFH	Time schedule 8	48	
0045Н	J1 control	2	Rely 1: 0 disconnect; 1 connect
0046Н	J2 control	2	Rely 2: 0 disconnect; 1 connect
0047Н	Status of switching value	2	Note 4
0048H	J1 output pulse width		
0049Н	Type of J1 alarm		
004AH	Threshold value of J1 alarm		
004BH	Delay of J1 alarm	0	N. I. O.
004CH	J2 output pulse width	2	Note 2
004DH	Type of J2 alarm		
004EH	Threshold value of J2 alarm		
004FH	Delay of J2 alarm		
0050Н	UA		
0051H	UB	2	Unsigned int
0052Н	UC		

0053Н	UAB		
0053H 0054H	UBC		
0054H	UCA		
0055Н			
	IA		
0057H	IB	2	Unsigned int
0058H	IC		
0059Н	IN		
005AH	PA		
005BH	PB		
005CH	PC		
005DH	PT		
005ЕН	QA		
005FH	QB	2	4 decimal places
0060Н	QC	_	Unsigned int
0061Н	QT		
0062Н	SA		
0063Н	SB		
0064Н	SC		
0065Н	ST		
0066Н	PFA		
0067Н	PFB	2	
0068Н	PFC	2	3 decimal places, unsigned int
0069Н	PF		
006AH	Power direction	2	Note 3
006ВН	Frequency	2	2 decimal placles, unsigned int
006СН	Current forward demand for active power	2	
006DH	Current reversing demand for active power	2	
006ЕН	Current forward demand for reactive power	2	4 decimal places, unsigned int
006FH	Current reversing demand for reactive power	2	
0070Н	Maximum forward demand for active power	2	
0071H~0072H	Time of occurrence	4	Minute , hour , day, month
0073Н	Maximum reversing demand for active power	2	
0074H~0075H	Time of occurrence	4	Minute , hour , day, month
0076Н	Maximum forward demand for reactive power	2	
0077H~0078H	Time of occurrence	4	Minute , hour , day, month
	Maximum reversing demand for reactive	2	
0079Н	power		

007CH~007DH	Current combined total active energy	4
007EH~007FH	Current forward total active energy	4
0080H~0081H	Current reversing total active energy	4
0082H∼0083H	Current forward total reactive energy	4
0084H~0085H	Current reversing reactive energy	4
0086H~0087H	Current F1(Sharp-period) combined active energy	4
0088Н~0089Н	Current F2(Peak-period) combined active energy	4
008AH~008BH	Current F3(Flat-period) combined active energy	4
008CH~008DH	Current F4(valley-period) combined active energy	4
008EH~008FH	Current forward active energy on F1(Sharp-period)	4
0090H~0091H	Current forward active energy on F2(Peak-period)	4
0092H~0093H	Current forward active energy on F3(Flat-period)	4
0094H~0095H	Current forward active energy on F4(valley-period)	4
0096H~0097H	Current reversing active energy on F1(Sharp-period)	4
0098Н~0099Н	Current reversing active energy on F2(Peak-period)	4
009АН~009ВН	Current reversing active energy on F3(Flat-period)	4
009CH~009DH	Current reversing active energy on F4(valley-period)	4
009ЕН∼09ГН	Current forward reactive energy on F1(Sharp-period)	4
00A0H~00A1H	Current forward reactive energy on F2(Peak-period)	4
00A2H~00A3H	Current forward reactive energy on F3(Flat-period)	4
00A4H~00A5H	Current forward reactive energy on F4(valley-period)	4
00A6H~00A7H	Current reversing reactive energy on F1(Sharp-period)	4
00А8Н~00А9Н	Current reversing reactive energy on F2(Peak-period)	4

 $2\ {\rm decimal\ places,\ unsigned\ long}$

00AAH~00ABH	Current reversing reactive energy on F3(Flat-period)	4
00ACH~00ADH	Current reversing reactive energy on F4(valley-period)	4
72C0H~72C1H	Current F5 combined active energy	4
72C2H~72C3H	Current F6 combined active energy	4
72C4H~72C5H	Current F7 combined active energy	4
72C6H~72C7H	Current F8 combined active energy	4
72C8H~72C9H	Current forward active energy on F5	4
72CAH∼72CBH	Current forward active energy on F6	4
72CCH~72CDH	Current forward active energy on F7	4
72CEH~72CFH	Current forward active energy on F8	4
72D0H~72D1H	Current reversing active energy on F5	4
72D2H~72D3H	Current reversing active energy on F6	4
72D4H~72D5H	Current reversing active energy on F7	4
72D6H~72D7H	Current reversing active energy on F8	4
72D8H∼72D9H	Current forward reactive energy on F5	4
72DAH∼72DBH	Current forward reactive energy on F6	4
72DCH~72DDH	Current forward reactive energy on F7	4
72DEH∼72DFH	Current forward reactive energy on F8	4
72E0H~72E1H	Current reversing reactive energy on F5	4
72E2H~72E3H	Current reversing reactive energy on F6	4
72E4H~72E5H	Current reversing reactive energy on F7	4
72E6H~72E7H	Current reversing reactive energy on F8	4
72E8H~72E9H	Current apparent electrical on F5	4
72EAH∼72EBH	Current apparent electrical on F6	4
72ECH~72EDH	Current apparent electrical on F7	4
72EEH∼72EFH	Current apparent electrical on F5	4
00AEH∼00AFH	Total amount of phase A combined active energy	4
00B0H~00B1H	Total amount of phase A positive active energy	4
00В2H~00В3Н	Total amount of phase A negative active energy	4
00B4H~00B5H	Total amount of phase A positive reactive energy	4
00B6H~00B7H	Total amount of phase A negative active energy	4
00В8Н~00В9Н	Total amount of phase B combined active energy	4

00BAH~00BBH	Total amount of phase B positive active energy	4	
00BCH~00BDH	Total amount of phase B negative active energy	4	
00BEH~00BFH	Total amount of phase B positive reactive energy	4	
00C0H~00С1H	Total amount of phase B negative reactive energy	4	
00С2Н~00С3Н	Total amount of phase C combined active energy	4	
00С4H~00С5H	Total amount of phase C positive active energy	4	
00С6Н~00С7Н	Total amount of phase C negative active energy	4	
00С8Н~00С9Н	Total amount of phase C positive reactive energy	4	
00САН~00СВН	Total amount of phase C negative reactive energy	4	
ООССН	THDUa		
OOCDH	THDUb	2	
ООСЕН	THDUc		
00CFH	THDIa		2 decimal places, unsigned int
ООДОН	THDIb		
00D1H	THDIc		
00D2H∼00EFH	THUa (2 nd -31 st harmonic)	2×30	
00F0H~010DH	THUb (2 nd -31 st harmonic)	2×30	
010EH∼012BH	THUc (2 nd -31 st harmonic)	2×30	Each harmonic length is a register
012CH~0149H	THIa (2 nd -31 st harmonic)	2×30	2 decimal places, unsigned int
014AH~0167H	THIb (2 nd -31 st harmonic)	2×30	
0168H∼0185H	THIc (2 nd -31 st harmonic)	2×30	
0186Н	phase A fundamental voltage		
0187Н	phase B fundamental voltage		
0188Н	phase C fundamental voltage	0	
0189Н	phase A harmonic voltage	2	1 decimal places, unsigned int
018AH	phase B harmonic voltage		
018BH	phase C harmonic voltage		
018CH	phase A fundamental current		
018DH	phase B fundamental current	0	
018EH	phase C fundamental current	2	3 docimal places unsigned int
018FH	phase A harmonic current		3 decimal places, unsigned int

0190Н	phase B harmonic current		
0191H	phase C harmonic current		
0191H 0192H	phase A fundamental active power		
0193H	phase B fundamental active power		
0194Н	phase C fundamental active power		
0195Н	Total fundamental active power		
0196Н	phase A fundamental reactive power		
0197Н	phase B fundamental reactive power		
0198Н	phase C fundamental reactive power		
0199Н	Total fundamental reactive power	2	4 decimal places, unsigned int
019AH	phase A harmonic active power	2	
019BH	phase B harmonic active power		
019СН	phase C harmonic active power		
019DH	Total harmonic active power		
019ЕН	phase A harmonic reactive power		
019FH	phase B harmonic reactive power		
О1АОН	phase C harmonic reactive power		
01A1H	Total harmonic reactive power		
01A2H	Voltage imbalance	2	2 decimal places, unsigned int
01АЗН	Current imbalance		
	The angle between the A current and the	2	2 decimal places, unsigned int
01A4H	A voltage		
OLAFII	The angle between the B current and the		
01A5H	B voltage		
01А6Н	The angle between the C current and the		
OTAOH	C voltage		
01A7H~01A8H	Positive apparent energy	4	2 decimal places, unsigned int
01А9Н~01ААН	Apparent electrical energy on the Sharpe cycle	4	
01ABH∼01ACH	Peak apparent electrical energy	4	
01ADH∼01AEH	Normal apparent electrical energy	4	
01AFH~01B0H	Apparent electrical energy in the	4	
OTM II OTDOII	valley period		
01B1H	The current A-phase current is required	2	3 decimal places, unsigned int
012111	in real time		
01B2H	The current B-phase current is required	2	
	in real time		
01B3H	The current C-phase current is required	2	
0.475.477	in real time	2	
01B4H	Current apparent power real-time demand	2	
01B5H	A phase current maximum demand	2	

01B6H~01B7H	Time of occurrence	4	Minutes, hours, days, months
01B8H	B phase current maximum demand	2	
01B0H~01B1H	Time of occurrence	4	Minutes, hours, days, months
01BBH	C phase current maximum demand	2	
01BCH~01BDH	Time of occurrence	4	Minutes, hours, days, months
01BEH	Apparent power maximum demand	2	
01BFH~01C0H	Time of occurrence	4	Minutes, hours, days, months
01C1H	Odd-sequence total harmonic number of	2	2 decimal places, unsigned int
OTCIII	phase A voltages		
01С2Н	Odd-sequence total harmonic number of	2	
01C2H	phase B voltages		
016211	Odd-sequence total harmonic number of	2	
01C3H	phase C voltages		
01.0411	Odd-order total harmonic number of	2	
01C4H	phase A currents		
01.0511	Odd-order total harmonic number of	2	
01C5H	phase B currents		
0.1.001	Odd-order total harmonic number of	2	
01С6Н	phase C currents		
	The number of even-order total	2	1
01С7Н	harmonics of the A-phase voltage		
0.1.00**	The number of even-order total	2	-
01C8H	harmonics of the B-phase voltage		
	The number of even-order total	2	1
01С9Н	harmonics of the C-phase voltage		
0.1.0.11	The total number of harmonics of the	2	
O1CAH	even sequence of phase A currents		
0.1 0777	The total number of harmonics of the	2	
01CBH	even sequence of phase B currents		
	The total number of harmonics of the	2	1
01CCH	even sequence of phase C currents		
	The total amount of reactive electrical	4	2 decimal places, unsigned int
01CDH∼01CEH	energy at present		
	Reactive energy in the current first	4	-
01CFH∼01D0H	quadrant		
	Reactive energy in the current second	4	
01D1H~01D2H	quadrant		
	Reactive energy in the current third	4	-
01D3H∼01D4H	quadrant		
	Reactive energy in the current fourth	4	1
01D5H∼01D6H	quadrant		
01D7H	The angle of the A voltage	2	2 decimal places, unsigned int
01D8H	The angle between the B voltage and the	2	1

	A voltage		
01D9H	The angle between the C voltage and the	2	
010911	A voltage		
O1DAH	The angle between the A current and the	2	
OTDAII	A voltage		
01DBH	The angle between the B current and the	2	
OTDDII	A voltage		
01DCH	The angle between the C current and the	2	
OTDCII	A voltage		
7000H~703DH	THUa (2 nd -63 rd harmonic)	2×62	Each harmonic length is a register.
703ЕН \sim 707ВН	THUb (2 nd -63 rd harmonic)	2×62	2 decimal places, unsigned int
707CH~70В9Н	THUc (2 nd -63 rd harmonic)	2×62	
70BAH∼70F7H	THIa (2 nd -63 rd harmonic)	2×62	
70F8H~7135H	THIb (2 nd -63 rd harmonic)	2×62	
7136H~7173H	THIc (2 nd -63 rd harmonic)	2×62	
7174H	UA crest coefficient	2	
7175H	UB crest coefficient	2	
7176H	UC crest coefficient	2	
7177H	IA crest coefficient	2	3 decimal places, unsigned int
7178H	IB crest coefficient	2	
7179Н	IC crest coefficient	2	
717AH	A-phase telephone harmonic coefficient	2	
717BH	B-phase telephone harmonic coefficient	2	2 decimal places, unsigned int
717CH	C-phase telephone harmonic coefficient	2	
717DH	The K factor of the A-phase current	2	
717EH	The K factor of the B-phase current	2	2 decimal places, unsigned int
717FH	The K factor of the C-phase current	2	
8000H~8001H	UA	4	
8002H~8003H	UB	4	
8004H~8005H	UC	4	- Float
8006H~8007H	UAB	4	(Primary side data)
8008H~8009H	UBC	4	
800AH~800BH	UCA	4	
800CH~800DH	IA	4	
800EH~800FH	IB	4	Float
8010H~8011H	IC	4	(Primary side data)
8012H~8013H	IN	4	-
8014H~8015H	PA	4	
8016H~8017H	PB	4	- Float
8018H~8019H	PC	4	(Primary side data)
801AH~801BH	PT	4	
801CH~801DH	QA	4	Float
	****	*	11000

8020H~8021H	QC	4	
8022H~8023H	QT	4	-
8024H~8025H	SA	4	
8026H~8027H	SB	4	- Float
8028H~8029H	SC	4	(Primary side data)
802AH~802BH	ST	4	-
802CH~802DH	PFA	4	
802EH~802FH	PFB	4	-
8030H~8031H	PFC	4	Float
8032H~8033H	PF	4	-
8034H~8035H	F	4	Float
8036H~8037H	Voltage imbalance	4	
8038H~8039H	Current imbalance	4	- Float
803AH~803BH	Maximum forward demand for active power	4	
803CH~803DH	Maximum reversing demand for active	4	_
	power		- Float
803EH~803FH	Maximum forward demand for reactive power	4	(Primary side data)
8040H~8041H	Maximum reversing demand for reactive power	4	_
8100H~8101H	Current combined total active energy	4	1 decimal places, unsigned long
8102H~8103H	Current forward total active energy	4	(Primary side data)
8104H~8105H	Current reversing total active energy	4	
8106H~8107H	Current forward total reactive energy	4	
8108H~8109H	Current reversing reactive energy	4	
810AH~810BH	Current F1(Sharp-period) combined active energy	4	-
810CH~810DH	Current F2(Peak-period) combined active energy	4	-
810EH~810FH	Current F3(Flat-period) combined	4	_
8110H~8111H	active energy Current F4(valley-period) combined active energy	4	
8112H~8113H	Current F5 combined active energy	4	-
8114H~8115H	Current F6 combined active energy	4	-
8116H~8117H	Current F7 combined active energy	4	_
8118H~8119H	Current F8 combined active energy	4	_
	Current forward active energy on	4	_
811AH∼811BH	F1(Sharp-period)		
811CH~811DH	Current forward active energy on F2(Peak-period)	4	
811EH~811FH	Current forward active energy on	4	_
	F3(Flat-period)		

	Current forward active energy on	4
8120H~8121H	F4(valley-period)	1
8122H~8123H	Current forward active energy on F5	4
8124H~8125H	Current forward active energy on F6	4
8126H~8127H	Current forward active energy on F7	4
8128H~8129H	Current forward active energy on F8	4
012011 012011	Current reversing active energy on	4
812AH∼812BH	F1(Sharp-period)	•
	Current reversing active energy on	4
812CH∼812DH	F2 (Peak-period)	1
	Current reversing active energy on	4
812EH∼812FH	F3 (Flat-period)	1
	Current reversing active energy on	4
8130H~8131H	F4(valley-period)	1
8132H~8133H	Current reversing active energy on F5	4
8134H~8135H	Current reversing active energy on F6	4
8136H~8137H		4
	Current reversing active energy on F7	
8138H~8139H	Current reversing active energy on F8	4
813AH∼813BH	Current forward reactive energy on	4
	F1(Sharp-period)	
813CH∼813DH	Current forward reactive energy on	4
	F2 (Peak-period)	
813EH∼813FH	Current forward reactive energy on	4
	F3(Flat-period)	
8140H~8141H	Current forward reactive energy on	4
	F4(valley-period)	
8142H~8143H	Current forward reactive energy on F5	4
8144H~8145H	Current forward reactive energy on F6	4
8146H~8147H	Current forward reactive energy on F7	4
8148H~8149H	Current forward reactive energy on F8	4
814AH~814BH	Current reversing reactive energy on	4
0111111 0111111	F1(Sharp-period)	
814CH~814DH	Current reversing reactive energy on	4
01401 -014011	F2(Peak-period)	
814EH~814FH	Current reversing reactive energy on	4
014EH -014FH	F3(Flat-period)	
9150U~ .0151U	Current reversing reactive energy on	4
8150H∼8151H	F4(valley-period)	
8152H~8153H	Current reversing reactive energy on F5	4
8154H~8155H	Current reversing reactive energy on F6	4
8156H~8157H	Current reversing reactive energy on F7	4
8158H~8159H	Current reversing reactive energy on F8	4
815AH~815BH	Total amount of phase A combined active	4

	onorgy	
	energy	
815CH∼815DH	Total amount of phase A positive active energy	4
	Total amount of phase A negative active	4
815EH∼815FH	energy	_
	Total amount of phase A positive	4
8160H~8161H	reactive energy	1
		4
8162H~8163H	Total amount of phase A negative active	4
	energy	
8164H~8165H	Total amount of phase B combined active	4
	energy	
8166H∼8167H	Total amount of phase B positive active	4
	energy	
8168H~8169H	Total amount of phase B negative active	4
010011 - 010311	energy	
016411 016011	Total amount of phase B positive	4
816AH~816BH	reactive energy	
	Total amount of phase B negative	4
816CH~816DH	reactive energy	
	Total amount of phase C combined active	4
816EH∼816FH	energy	
	Total amount of phase C positive active	4
8170H~8171H	energy	1
	Total amount of phase C negative active	4
$8172 \text{H}{\sim}8173 \text{H}$	energy	1
	Total amount of phase C positive	4
$8174 \text{H}{\sim}8175 \text{H}$		4
	reactive energy	4
8176H~8177H	Total amount of phase C negative	4
	reactive energy	
8178H~8179H	Positive apparent energy	4
817AH~817BH	Apparent electrical energy on	4
	F1(Sharp-period)	
817CH~817DH	Apparent electrical energy on	4
011011 011011	F2(Peak-period)	
917EU~ .017EU	Apparent electrical energy on	4
817EH∼817FH	F3(Flat-period)	
010011 010111	Apparent electrical energy on	4
8180H~8181H	F4(valley-period)	
8182H~8183H	Apparent electrical on F5	4
8184H~8185H	Apparent electrical on F6	4
		4
8186H~8187H	Apparent electrical on F7	4
	Apparent electrical on F7 Apparent electrical on F5	4

	energy at present		
818CH∼818DH	Reactive energy in the current first quadrant	4	
818EH∼818FH	Reactive energy in the current second quadrant	4	
8190H~8191H	Reactive energy in the current third quadrant	4	
8192H~8193H	Reactive energy in the current fourth quadrant	4	
9000H~9001H	Current combined total active energy	4	4 decimal places, unsigned long
9002H~9003H	Current forward total active energy	4	-
9004H~9005H	Current reversing total active energy	4	-
9006H~9007H	Current forward total reactive energy	4	-
9008H~9009H	Current reversing reactive energy	4	-
900AH∼900BH	Current F1(Sharp-period) combined active energy	4	
900CH~900DH	Current F2(Peak-period) combined active energy	4	-
900EH∼900FH	Current F3(Flat-period) combined active energy	4	
9010H~9011H	Current F4(valley-period) combined active energy	4	-
9012H~9013H	Current F5 combined active energy	4	-
9014H~9015H	Current F6 combined active energy	4	-
9016H~9017H	Current F7 combined active energy	4	-
9018H~9019H	Current F8 combined active energy	4	1
901AH~901BH	Current forward active energy on F1(Sharp-period)	4	-
901CH~901DH	Current forward active energy on F2(Peak-period)	4	
901EH∼901FH	Current forward active energy on F3(Flat-period)	4	
9020H~9021H	Current forward active energy on F4(valley-period)	4	
9022H~9023H	Current forward active energy on F5	4	
9024H~9025H	Current forward active energy on F6	4	
9026H~9027H	Current forward active energy on F7	4	
9028H~9029H	Current forward active energy on F8	4	
902AH∼902BH	Current reversing active energy on F1(Sharp-period)	4	
902CH∼902DH	Current reversing active energy on F2(Peak-period)	4	
902EH∼902FH	Current reversing active energy on	4	1

	F3(Flat-period)	
9030H~9031H Current reversing active energy on		4
903007~903111	F4(valley-period)	
9032H∼9033H	Current reversing active energy on F5	4
9034H∼9035H	Current reversing active energy on F6	4
9036H∼9037H	Current reversing active energy on F7	4
9038H~9039H	Current reversing active energy on F8	4
000 ATT 000 DIT	Current forward reactive energy on	4
903AH∼903BH	F1(Sharp-period)	
903CH~903DH	Current forward reactive energy on	4
903CH~903DH	F2(Peak-period)	
903EH~903FH	Current forward reactive energy on	4
903Еп∕~903ГП	F3(Flat-period)	
9040H~9041H	Current forward reactive energy on	4
904017~904111	F4(valley-period)	
9042H∼9043H	Current forward reactive energy on F5	4
9044H~9045H	Current forward reactive energy on F6	4
9046H~9047H	Current forward reactive energy on F7	4
9048H~9049H	Current forward reactive energy on F8	4
004AII - 004DII	Current reversing reactive energy on	4
904AH~904BH	F1(Sharp-period)	
004CH 004DH	Current reversing reactive energy on	4
904CH~904DH	F2(Peak-period)	
004EH - 004EH	Current reversing reactive energy on	4
904EH~904FH	F3(Flat-period)	
00E0II - 00E1II	Current reversing reactive energy on	4
9050H~9051H	F4(valley-period)	
9052H∼9053H	Current reversing reactive energy on F5	4
9054H~9055H	Current reversing reactive energy on F6	4
9056H~9057H	Current reversing reactive energy on F7	4
9058H~9059H	Current reversing reactive energy on F8	4
DOENI OOFDII	Total amount of phase A combined active	4
905AH∼905BH	energy	
DOEGH OOFDH	Total amount of phase A positive active	4
905CH∼905DH	energy	
OOEDII OOEDII	Total amount of phase A negative active	4
905EH∼905FH	energy	
006011 006111	Total amount of phase A positive	4
9060H~9061H	reactive energy	
000011 000011	Total amount of phase A negative active	4
9062H~9063H	energy	
0064U- 0005U	Total amount of phase B combined active	4
9064H~9065H	energy	

9066H~9067H	Total amount of phase B positive active energy	4
9068Н~9069Н	Total amount of phase B negative active energy	4
906AH~906BH	Total amount of phase B positive reactive energy	4
906CH∼906DH	Total amount of phase B negative reactive energy	4
906EH∼906FH	Total amount of phase C combined active energy	4
9070H~9071H	Total amount of phase C positive active energy	4
9072H∼9073H	Total amount of phase C negative active energy	4
9074H~9075H	Total amount of phase C positive reactive energy	4
9076H~9077H	Total amount of phase C negative reactive energy	4
9078H~9079H	Positive apparent energy	4
907AH~907BH	Apparent electrical energy on F1(Sharp-period)	4
907CH~907DH	Apparent electrical energy on F2(Peak-period)	4
907EH∼907FH	Apparent electrical energy on F3(Flat-period)	4
9080H~9081H	Apparent electrical energy on F4(valley-period)	4
9082H~9083H	Apparent electrical on F5	4
9084H~9085H	Apparent electrical on F6	4
9086H~9087H	Apparent electrical on F7	4
9088H~9089H	Apparent electrical on F5	4
908AH~908BH	The total amount of reactive electrical energy at present	4
908CH~908DH	Reactive energy in the current first quadrant	4
908EH∼908FH	Reactive energy in the current second quadrant	4
9090H∼9091H	Reactive energy in the current third quadrant	4
9092H~9093H	Reactive energy in the current fourth quadrant	4

Note 1

Running control byte			
High byte Low byte			
Line system	Protocol		

Note 2

Type of alarm				
High byte	Low byte			
0: disable the alarm				
function				
1-4: UA、UB、UC、Ux	0: >;1: <			
5-8: IA、IB、IC、Ix				
9-12: PA、PB、PC、PT				

Output pulse width			
0: level output			
>0: pulse width in 0.1s			
Delay of alarm			
0: no delay			
>0: delay in 0.01s			

Note 3

D7	D6	D5	D4	D3	D2	D1	D0
Qt	Qc	Qb	Qa	Pt	Pa	Pb	Pc

Each byte represents one power direction. In details, 1 represents the reversing direction and 0 represents the forward direction.

Note 4: (0x47)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
				DI3	DI2	DI1	DIO

¹ connect 0 disconnect

8.2 Historical data reading

Starting address of interval (high byte)	Type of historical data
11-28	Previous 1 hour- previous 24 hours
29-47	Previous 1 day- previous 31 days
48-53	Previous 1 month –previous 12 month

Offset address of interval (low byte)	Data type
00	Recording date time
03	Total amount of historical combined active energy
05	Total amount of historical forward active energy
07	Total amount of historical reversing active energy
09	Total amount of historical forward reactive energy
0В	Total amount of historical reversing reactive energy
0D	F1(Sharp-period) amount of

	T
	historical combined active
	energy
	F2(Peak-period) amount of
0F	historical combined active
	energy
	F3(Flat-period) amount of
11	historical combined active
	energy
	F4(valley-period) amount of
13	historical combined active
	energy
	F1(Sharp-period) amount of
15	historical forward active
	energy
	F2(Peak-period) amount of
17	historical forward active
	energy
	F3(Flat-period) amount of
19	historical forward active
	energy
	F4(valley-period) amount of
1B	historical forward active
	energy
	F1(Sharp-period) amount of
1D	historical reversing active
	energy
	F2(Peak-period) amount of
1F	historical reversing active
	energy
	F3(Flat-period) amount of
21	historical reversing active
	energy
	F4(valley-period) amount of
23	historical reversing active
	energy
	F1(Sharp-period) amount of
25	historical forward reactive
	energy
	F2(Peak-period) amount of
27	historical forward reactive
20	energy
29	F3(Flat-period) amount of

	·
	historical forward reactive
	energy
	F4(valley-period) amount of
2B	historical forward reactive
	energy
	F1(Sharp-period) amount of
2D	historical reversing reactive
	energy
	F2(Peak-period) amount of
2F	historical reversing reactive
	energy
	F3(Flat-period) amount of
31	historical reversing reactive
	energy
	F4(valley-period) amount of
33	historical reversing reactive
	energy
	Total amount of phase A
35	combined active energy
	Total amount of phase A
37	forward active energy
39	Total amount of phase A
	reversing active energy
3B	Total amount of phase A
	forward reactive energy
3D	Total amount of phase A
	reversing reactive energy
3F	Total amount of phase B
-	combined active energy
41	Total amount of phase B
	forward active energy
43	Total amount of phase B
43	reversing active energy
45	Total amount of phase B
45	forward reactive energy
	Total amount of phase B
47	reversing reactive energy
	Total amount of phase C
49	combined active energy
	Total amount of phase C
4B	forward active energy
4D	0.
40	Total amount of phase C

	reversing active energy
4F	Total amount of phase C forward reactive energy
51	Total amount of phase C
	reversing reactive energy

The register address of historical data is divided into two parts, high byte and low byte. Combining bytes in two tables and then getting the register address of historical data. For example, if you want to read the total amount of historical forward reactive energy for the previous 4 hours, the address will be 1409H.

8.3 Historical Alarm output reading

Starting address of interval (high byte)	Type of historical data
	Alarm output event log

Offset address of interval (low byte)	Data type
00	Last 1 alarm output record
05	Last 2 alarm output record
OA	Last 3 alarm output record
0F	Last 4 alarm output record
14	Last 5 alarm output record
19	Last 6 alarm output record
1E	Last 7 alarm output record
23	Last 8 alarm output record
28	Last 9 alarm output record
2D	Last 10 alarm output record

ADDRH ADDRL	event names	Data type	Note
0300Н		Occurrence time (minute, second)	high byte : seconds
0301Н	The previous	Occurrence time (hour, day)	high byte : Hours
0302Н	alarm output record	Occurrence time of Month and year	high byte : Month
0303Н		number	high byte :DO number(0 : DO1, 1 :DO2) Low byte: switch status(0: off, 1: on)

000411		high byte: Limit Alarm (0:over threshold, 1:below threshold)
0304Н		Low byte: Alarm parameters (Note 2)

8.4 Historical Switching input reading

Starting address of interval (high byte)	Type of historical data
03	Switching input
03	incident record

Offset address of interval (low byte)	Data type	
32	Last 1 Switching input record	
37	Last 2 Switching input record	
3C	Last 3 Switching input record	
41	Last 4 Switching input record	
46	Last 5 Switching input record	
4B	Last 6 Switching input record	
50	Last 7 Switching input record	
55	Last 8 Switching input record	
5A	Last 9 Switching input record	
5F	Last 10 Switching input record	

ADDRH ADDRL	event names	Data type	Note
0332Н		Occurrence time of seconds and minutes	high byte : seconds
0333Н		Occurrence time of Hours and days	high byte : Hours
0334Н	Last 1 Switching input record	Occurrence time of Month and year	high byte : Month
0335Н		number	high byte:D0 number(0: DI1, 1: DI2, 2: DI3, 3: DI4) Low byte: switch status(0: off, 1: on)
0336Н		reservation	

$8.5\,\mbox{Record}$ of extreme value and occurrence time

Maximum records:

Starting address of interval (high byte)	Type of historical data
04	Extremum of the month and Occurrence time

Offset address of interval (low byte)	
00	Voltage of A phase maximum value and occurrence time

05	Extremum of last 1 month and Occurrence time
06	Extremum of last 2 month
	and Occurrence time
07	Extremum of last 3 month
07	and Occurrence time

03	Voltage of B phase maximum value and occurrence time		
06	Voltage of C phase maximum value and occurrence time		
09	Voltage between A-B maximum value and occurrence time		
OC	Voltage between A-B maximum value and occurrence time		
OF	Voltage between A-B maximum value and occurrence time		
12	Electricity of A phase maximum value and occurrence time		
15	Electricity of B phase maximum value and occurrence time		
18	Electricity of C phase maximum value and occurrence time		
1B	Three phase current vector sum maximum value and occurrence time		
1E	Active power of A phase maximum value and occurrence time		
21	Active power of B phase maximum value and occurrence time		
24	Active power of C phase maximum value and occurrence time		
27	Total active power maximum value and occurrence time		
2A	Reactive power of A phase maximum value and occurrence time		
2D	Reactive power of B phase maximum value and occurrence time		
30	Reactive power of C phase maximum value and occurrence time		
33	Total reactive power maximum value and occurrence time		
36	Apparent power of A phase maximum value and occurrence time		
39	Apparent power of B phase maximum value and occurrence time		
3C	Apparent power of C phase maximum value and occurrence time		
3F	Total apparent power maximum value and		
	•		

Minimum record:

Starting address of interval (high byte)	Type of historical data
04	Extremum of the month and Occurrence time
05	Extremum of last 1 month and Occurrence time
06	Extremum of last 2 month and Occurrence time
07 Extremum of last 3 mon- and Occurrence time	

occurrence	time
occurrence	time

Offset address of interval (low byte)	Data type		
42	Voltage of A phase Minimum Value and		
45	occurrence time Voltage of B phase Minimum Value and occurrence time		
48	Voltage of C phase Minimum Value and occurrence time		
4B	Voltage between A-B Minimum Value and occurrence time		
4E	Voltage between B-C Minimum value and occurrence time		
51	Voltage between C-A Minimum value and occurrence time		
54	Electricity of A phase Minimum value and occurrence time		
57	Electricity of B phase Minimum value and occurrence time		
5A	Electricity of C phase Minimum value and occurrence time		
5D	Three phase current vector sum Minimum value and occurrence time		
60	Active power of A phase Minimum value and occurrence time		
63	Active power of B phase Minimum value and occurrence time		
66	Active power of C phase Minimum value and occurrence time		
69	Total active power Minimum value and occurrence time		
6C	Reactive power of A phase Minimum value and occurrence time		
6F	Reactive power of B phase Minimum value and occurrence time		
72	Reactive power of C phase Minimum value and occurrence time		
75	Total reactive power Minimum value and occurrence time		

78	Apparent power of A phase Minimum value and		
10	occurrence time		
7B	Apparent power of B phase Minimum value and		
10	occurrence time		
70	Apparent power of C phase Minimum value and		
7E	occurrence time		
81	Total apparent power Minimum value and		
	occurrence time		

Note: The record of every extreme value and occurrence time is 6 bits, and the data configuration can be referred as below:

ADDRH ADDRL	event names	Data type	Note
0400Н	W	voltage of A phase	data and decimal place refer to address table 8.1
0401Н	phase and	Occurrence time of minutes and hours	
0402Н		Occurrence time of Days and months	high byte : Days

8.6 read records from a historical demand

Type of historical data	
Historical Demand	

Offset address of interval (low byte)	Data type	
00	Last 1 month Demand	
OC	Last 2 month Demand	
18	Last 3 month Demand	
24	Last 4 month Demand	
30	Last 5 month Demand	
3C	Last 6 month Demand	
48	Last 7 month Demand	
54	Last 8 month Demand	
60	Last 9 month Demand	
6C	Last 10 month Demand	
78	Last 11 month Demand	
84	Last 12 month Demand	

Note: The length of each event record is 24 bits, and the data configuration can be referred as below:

ADDRH ADDRL	event names	Data type	Note
TIDDIGI TIDDIG	event names	Forward active	Demand Data
Н0080		demand	Domaira Dava
	-	Occurrence time of	high byte : minutes
0801Н		seconds and	
		minutes	
0802Н		Occurrence time of	high byte : Days
		Days and months	
0803Н		reversing active	Demand Data
		demand	
0804Н			high byte : minutes
		minutes and hours	
0805Н		Occurrence time of	high byte : Days
		Days and months	
0806Н	-	forward reactive	Demand Data
000011		demand	
0807Н			high byte : minutes
		minutes and hours	
0808Н		Occurrence time of	high byte : Days
		Days and months	
0809Н		reversing reactive	Demand Data
		demand	
080AH			high byte : minutes
		minutes and hours	
080BH		Occurrence time of	high byte : Days
		Days and months	

Headquarters: Acrel Co., LTD.

Address: No.253 Yulv Road Jiading District, Shanghai, China

TEL.: 0086-21-69158338 0086-21-69156052 0086-21-59156392

0086-21-69156971 Fax: 0086-21-69158303

Web-site: www.acrel-electric.com E-mail: ACREL008@vip.163.com

Postcode: 201801

Manufacturer: Jiangsu Acrel Electrical Manufacturing Co., LTD.

Address: No.5 Dongmeng Road, Dongmeng industrial Park, Nanzha Street, Jiangyin

City, Jiangsu Province, China TEL: 0086-510-86179966 Fax: 0086-510-86179975 Web-site: www.jsacrel.com

Postcode: 214405

E-mail: sales@email.acrel.cn